/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 40 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 33 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0, cons(x, xs), ys) -> x take(0, nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: helpa, plus, length, ge, helpb, take They will be analysed ascendingly in the following order: ge < helpa helpa = helpb take < helpb ---------------------------------------- (6) Obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s Generator Equations: gen_nil:cons:xs5_0(0) <=> nil gen_nil:cons:xs5_0(+(x, 1)) <=> cons(hole_take3_0, gen_nil:cons:xs5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: plus, helpa, length, ge, helpb, take They will be analysed ascendingly in the following order: ge < helpa helpa = helpb take < helpb ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s6_0(a), gen_0':s6_0(n8_0)) -> gen_0':s6_0(+(n8_0, a)), rt in Omega(1 + n8_0) Induction Base: plus(gen_0':s6_0(a), gen_0':s6_0(0)) ->_R^Omega(1) gen_0':s6_0(a) Induction Step: plus(gen_0':s6_0(a), gen_0':s6_0(+(n8_0, 1))) ->_R^Omega(1) s(plus(gen_0':s6_0(a), gen_0':s6_0(n8_0))) ->_IH s(gen_0':s6_0(+(a, c9_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s Generator Equations: gen_nil:cons:xs5_0(0) <=> nil gen_nil:cons:xs5_0(+(x, 1)) <=> cons(hole_take3_0, gen_nil:cons:xs5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: plus, helpa, length, ge, helpb, take They will be analysed ascendingly in the following order: ge < helpa helpa = helpb take < helpb ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s Lemmas: plus(gen_0':s6_0(a), gen_0':s6_0(n8_0)) -> gen_0':s6_0(+(n8_0, a)), rt in Omega(1 + n8_0) Generator Equations: gen_nil:cons:xs5_0(0) <=> nil gen_nil:cons:xs5_0(+(x, 1)) <=> cons(hole_take3_0, gen_nil:cons:xs5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: length, helpa, ge, helpb, take They will be analysed ascendingly in the following order: ge < helpa helpa = helpb take < helpb ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_nil:cons:xs5_0(n825_0)) -> gen_0':s6_0(n825_0), rt in Omega(1 + n825_0) Induction Base: length(gen_nil:cons:xs5_0(0)) ->_R^Omega(1) 0' Induction Step: length(gen_nil:cons:xs5_0(+(n825_0, 1))) ->_R^Omega(1) s(length(gen_nil:cons:xs5_0(n825_0))) ->_IH s(gen_0':s6_0(c826_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s Lemmas: plus(gen_0':s6_0(a), gen_0':s6_0(n8_0)) -> gen_0':s6_0(+(n8_0, a)), rt in Omega(1 + n8_0) length(gen_nil:cons:xs5_0(n825_0)) -> gen_0':s6_0(n825_0), rt in Omega(1 + n825_0) Generator Equations: gen_nil:cons:xs5_0(0) <=> nil gen_nil:cons:xs5_0(+(x, 1)) <=> cons(hole_take3_0, gen_nil:cons:xs5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: ge, helpa, helpb, take They will be analysed ascendingly in the following order: ge < helpa helpa = helpb take < helpb ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s6_0(n1099_0), gen_0':s6_0(n1099_0)) -> true, rt in Omega(1 + n1099_0) Induction Base: ge(gen_0':s6_0(0), gen_0':s6_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s6_0(+(n1099_0, 1)), gen_0':s6_0(+(n1099_0, 1))) ->_R^Omega(1) ge(gen_0':s6_0(n1099_0), gen_0':s6_0(n1099_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s Lemmas: plus(gen_0':s6_0(a), gen_0':s6_0(n8_0)) -> gen_0':s6_0(+(n8_0, a)), rt in Omega(1 + n8_0) length(gen_nil:cons:xs5_0(n825_0)) -> gen_0':s6_0(n825_0), rt in Omega(1 + n825_0) ge(gen_0':s6_0(n1099_0), gen_0':s6_0(n1099_0)) -> true, rt in Omega(1 + n1099_0) Generator Equations: gen_nil:cons:xs5_0(0) <=> nil gen_nil:cons:xs5_0(+(x, 1)) <=> cons(hole_take3_0, gen_nil:cons:xs5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: take, helpa, helpb They will be analysed ascendingly in the following order: helpa = helpb take < helpb ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: take(gen_0':s6_0(n1397_0), gen_nil:cons:xs5_0(0), gen_nil:cons:xs5_0(+(1, n1397_0))) -> hole_take3_0, rt in Omega(1 + n1397_0) Induction Base: take(gen_0':s6_0(0), gen_nil:cons:xs5_0(0), gen_nil:cons:xs5_0(+(1, 0))) ->_R^Omega(1) hole_take3_0 Induction Step: take(gen_0':s6_0(+(n1397_0, 1)), gen_nil:cons:xs5_0(0), gen_nil:cons:xs5_0(+(1, +(n1397_0, 1)))) ->_R^Omega(1) take(gen_0':s6_0(n1397_0), nil, gen_nil:cons:xs5_0(+(1, n1397_0))) ->_IH hole_take3_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: app(x, y) -> helpa(0', plus(length(x), length(y)), x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0' length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, ys, zs) take(0', cons(x, xs), ys) -> x take(0', nil, cons(y, ys)) -> y take(s(c), cons(x, xs), ys) -> take(c, xs, ys) take(s(c), nil, cons(y, ys)) -> take(c, nil, ys) helpb(c, l, ys, zs) -> cons(take(c, ys, zs), helpa(s(c), l, ys, zs)) Types: app :: nil:cons:xs -> nil:cons:xs -> nil:cons:xs helpa :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs 0' :: 0':s plus :: 0':s -> 0':s -> 0':s length :: nil:cons:xs -> 0':s s :: 0':s -> 0':s nil :: nil:cons:xs cons :: take -> nil:cons:xs -> nil:cons:xs if :: true:false -> 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false helpb :: 0':s -> 0':s -> nil:cons:xs -> nil:cons:xs -> nil:cons:xs take :: 0':s -> nil:cons:xs -> nil:cons:xs -> take xs :: nil:cons:xs hole_nil:cons:xs1_0 :: nil:cons:xs hole_0':s2_0 :: 0':s hole_take3_0 :: take hole_true:false4_0 :: true:false gen_nil:cons:xs5_0 :: Nat -> nil:cons:xs gen_0':s6_0 :: Nat -> 0':s Lemmas: plus(gen_0':s6_0(a), gen_0':s6_0(n8_0)) -> gen_0':s6_0(+(n8_0, a)), rt in Omega(1 + n8_0) length(gen_nil:cons:xs5_0(n825_0)) -> gen_0':s6_0(n825_0), rt in Omega(1 + n825_0) ge(gen_0':s6_0(n1099_0), gen_0':s6_0(n1099_0)) -> true, rt in Omega(1 + n1099_0) take(gen_0':s6_0(n1397_0), gen_nil:cons:xs5_0(0), gen_nil:cons:xs5_0(+(1, n1397_0))) -> hole_take3_0, rt in Omega(1 + n1397_0) Generator Equations: gen_nil:cons:xs5_0(0) <=> nil gen_nil:cons:xs5_0(+(x, 1)) <=> cons(hole_take3_0, gen_nil:cons:xs5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: helpb, helpa They will be analysed ascendingly in the following order: helpa = helpb