/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 250 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 51 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0, s(x)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0, x), x) ifa(true, x) -> help(x, 1) ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0', x), x) ifa(true, x) -> help(x, 1') ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0', x), x) ifa(true, x) -> help(x, 1') ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) Types: lt :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> true:false 0' :: 0':s:1':logZeroError s :: 0':s:1':logZeroError -> 0':s:1':logZeroError true :: true:false false :: true:false logarithm :: 0':s:1':logZeroError -> 0':s:1':logZeroError ifa :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError help :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError 1' :: 0':s:1':logZeroError logZeroError :: 0':s:1':logZeroError ifb :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError half :: 0':s:1':logZeroError -> 0':s:1':logZeroError hole_true:false1_0 :: true:false hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError gen_0':s:1':logZeroError3_0 :: Nat -> 0':s:1':logZeroError ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: lt, help, half They will be analysed ascendingly in the following order: lt < help half < help ---------------------------------------- (6) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0', x), x) ifa(true, x) -> help(x, 1') ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) Types: lt :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> true:false 0' :: 0':s:1':logZeroError s :: 0':s:1':logZeroError -> 0':s:1':logZeroError true :: true:false false :: true:false logarithm :: 0':s:1':logZeroError -> 0':s:1':logZeroError ifa :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError help :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError 1' :: 0':s:1':logZeroError logZeroError :: 0':s:1':logZeroError ifb :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError half :: 0':s:1':logZeroError -> 0':s:1':logZeroError hole_true:false1_0 :: true:false hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError gen_0':s:1':logZeroError3_0 :: Nat -> 0':s:1':logZeroError Generator Equations: gen_0':s:1':logZeroError3_0(0) <=> 0' gen_0':s:1':logZeroError3_0(+(x, 1)) <=> s(gen_0':s:1':logZeroError3_0(x)) The following defined symbols remain to be analysed: lt, help, half They will be analysed ascendingly in the following order: lt < help half < help ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) Induction Base: lt(gen_0':s:1':logZeroError3_0(0), gen_0':s:1':logZeroError3_0(+(1, 0))) ->_R^Omega(1) true Induction Step: lt(gen_0':s:1':logZeroError3_0(+(n5_0, 1)), gen_0':s:1':logZeroError3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0', x), x) ifa(true, x) -> help(x, 1') ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) Types: lt :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> true:false 0' :: 0':s:1':logZeroError s :: 0':s:1':logZeroError -> 0':s:1':logZeroError true :: true:false false :: true:false logarithm :: 0':s:1':logZeroError -> 0':s:1':logZeroError ifa :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError help :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError 1' :: 0':s:1':logZeroError logZeroError :: 0':s:1':logZeroError ifb :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError half :: 0':s:1':logZeroError -> 0':s:1':logZeroError hole_true:false1_0 :: true:false hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError gen_0':s:1':logZeroError3_0 :: Nat -> 0':s:1':logZeroError Generator Equations: gen_0':s:1':logZeroError3_0(0) <=> 0' gen_0':s:1':logZeroError3_0(+(x, 1)) <=> s(gen_0':s:1':logZeroError3_0(x)) The following defined symbols remain to be analysed: lt, help, half They will be analysed ascendingly in the following order: lt < help half < help ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0', x), x) ifa(true, x) -> help(x, 1') ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) Types: lt :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> true:false 0' :: 0':s:1':logZeroError s :: 0':s:1':logZeroError -> 0':s:1':logZeroError true :: true:false false :: true:false logarithm :: 0':s:1':logZeroError -> 0':s:1':logZeroError ifa :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError help :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError 1' :: 0':s:1':logZeroError logZeroError :: 0':s:1':logZeroError ifb :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError half :: 0':s:1':logZeroError -> 0':s:1':logZeroError hole_true:false1_0 :: true:false hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError gen_0':s:1':logZeroError3_0 :: Nat -> 0':s:1':logZeroError Lemmas: lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s:1':logZeroError3_0(0) <=> 0' gen_0':s:1':logZeroError3_0(+(x, 1)) <=> s(gen_0':s:1':logZeroError3_0(x)) The following defined symbols remain to be analysed: half, help They will be analysed ascendingly in the following order: half < help ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s:1':logZeroError3_0(*(2, n263_0))) -> gen_0':s:1':logZeroError3_0(n263_0), rt in Omega(1 + n263_0) Induction Base: half(gen_0':s:1':logZeroError3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s:1':logZeroError3_0(*(2, +(n263_0, 1)))) ->_R^Omega(1) s(half(gen_0':s:1':logZeroError3_0(*(2, n263_0)))) ->_IH s(gen_0':s:1':logZeroError3_0(c264_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) logarithm(x) -> ifa(lt(0', x), x) ifa(true, x) -> help(x, 1') ifa(false, x) -> logZeroError help(x, y) -> ifb(lt(y, x), x, y) ifb(true, x, y) -> help(half(x), s(y)) ifb(false, x, y) -> y half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) Types: lt :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> true:false 0' :: 0':s:1':logZeroError s :: 0':s:1':logZeroError -> 0':s:1':logZeroError true :: true:false false :: true:false logarithm :: 0':s:1':logZeroError -> 0':s:1':logZeroError ifa :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError help :: 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError 1' :: 0':s:1':logZeroError logZeroError :: 0':s:1':logZeroError ifb :: true:false -> 0':s:1':logZeroError -> 0':s:1':logZeroError -> 0':s:1':logZeroError half :: 0':s:1':logZeroError -> 0':s:1':logZeroError hole_true:false1_0 :: true:false hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError gen_0':s:1':logZeroError3_0 :: Nat -> 0':s:1':logZeroError Lemmas: lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) half(gen_0':s:1':logZeroError3_0(*(2, n263_0))) -> gen_0':s:1':logZeroError3_0(n263_0), rt in Omega(1 + n263_0) Generator Equations: gen_0':s:1':logZeroError3_0(0) <=> 0' gen_0':s:1':logZeroError3_0(+(x, 1)) <=> s(gen_0':s:1':logZeroError3_0(x)) The following defined symbols remain to be analysed: help