/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 246 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 69 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 45 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^2, INF) (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: table -> gen(s(0)) gen(x) -> if1(le(x, 10), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10), x, y) if3(true, x, y) -> cons(entry(x, y, times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) 10 -> s(s(s(s(s(s(s(s(s(s(0)))))))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(x, y, times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: entry/0 entry/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: gen, le, if2, times, plus They will be analysed ascendingly in the following order: le < gen gen = if2 le < if2 times < if2 plus < times ---------------------------------------- (8) Obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s Generator Equations: gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(entry(0'), gen_nil:cons5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: le, gen, if2, times, plus They will be analysed ascendingly in the following order: le < gen gen = if2 le < if2 times < if2 plus < times ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) -> true, rt in Omega(1 + n8_0) Induction Base: le(gen_0':s6_0(0), gen_0':s6_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s6_0(+(n8_0, 1)), gen_0':s6_0(+(n8_0, 1))) ->_R^Omega(1) le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s Generator Equations: gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(entry(0'), gen_nil:cons5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: le, gen, if2, times, plus They will be analysed ascendingly in the following order: le < gen gen = if2 le < if2 times < if2 plus < times ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s Lemmas: le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) -> true, rt in Omega(1 + n8_0) Generator Equations: gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(entry(0'), gen_nil:cons5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: plus, gen, if2, times They will be analysed ascendingly in the following order: gen = if2 times < if2 plus < times ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s6_0(n289_0), gen_0':s6_0(b)) -> gen_0':s6_0(+(n289_0, b)), rt in Omega(1 + n289_0) Induction Base: plus(gen_0':s6_0(0), gen_0':s6_0(b)) ->_R^Omega(1) gen_0':s6_0(b) Induction Step: plus(gen_0':s6_0(+(n289_0, 1)), gen_0':s6_0(b)) ->_R^Omega(1) s(plus(gen_0':s6_0(n289_0), gen_0':s6_0(b))) ->_IH s(gen_0':s6_0(+(b, c290_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s Lemmas: le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) -> true, rt in Omega(1 + n8_0) plus(gen_0':s6_0(n289_0), gen_0':s6_0(b)) -> gen_0':s6_0(+(n289_0, b)), rt in Omega(1 + n289_0) Generator Equations: gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(entry(0'), gen_nil:cons5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: times, gen, if2 They will be analysed ascendingly in the following order: gen = if2 times < if2 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s6_0(n1106_0), gen_0':s6_0(b)) -> gen_0':s6_0(*(n1106_0, b)), rt in Omega(1 + b*n1106_0 + n1106_0) Induction Base: times(gen_0':s6_0(0), gen_0':s6_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s6_0(+(n1106_0, 1)), gen_0':s6_0(b)) ->_R^Omega(1) plus(gen_0':s6_0(b), times(gen_0':s6_0(n1106_0), gen_0':s6_0(b))) ->_IH plus(gen_0':s6_0(b), gen_0':s6_0(*(c1107_0, b))) ->_L^Omega(1 + b) gen_0':s6_0(+(b, *(n1106_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s Lemmas: le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) -> true, rt in Omega(1 + n8_0) plus(gen_0':s6_0(n289_0), gen_0':s6_0(b)) -> gen_0':s6_0(+(n289_0, b)), rt in Omega(1 + n289_0) Generator Equations: gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(entry(0'), gen_nil:cons5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: times, gen, if2 They will be analysed ascendingly in the following order: gen = if2 times < if2 ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^2, INF) ---------------------------------------- (22) Obligation: TRS: Rules: table -> gen(s(0')) gen(x) -> if1(le(x, 10'), x) if1(false, x) -> nil if1(true, x) -> if2(x, x) if2(x, y) -> if3(le(y, 10'), x, y) if3(true, x, y) -> cons(entry(times(x, y)), if2(x, s(y))) if3(false, x, y) -> gen(s(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) 10' -> s(s(s(s(s(s(s(s(s(s(0')))))))))) Types: table :: nil:cons gen :: 0':s -> nil:cons s :: 0':s -> 0':s 0' :: 0':s if1 :: false:true -> 0':s -> nil:cons le :: 0':s -> 0':s -> false:true 10' :: 0':s false :: false:true nil :: nil:cons true :: false:true if2 :: 0':s -> 0':s -> nil:cons if3 :: false:true -> 0':s -> 0':s -> nil:cons cons :: entry -> nil:cons -> nil:cons entry :: 0':s -> entry times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s hole_false:true3_0 :: false:true hole_entry4_0 :: entry gen_nil:cons5_0 :: Nat -> nil:cons gen_0':s6_0 :: Nat -> 0':s Lemmas: le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) -> true, rt in Omega(1 + n8_0) plus(gen_0':s6_0(n289_0), gen_0':s6_0(b)) -> gen_0':s6_0(+(n289_0, b)), rt in Omega(1 + n289_0) times(gen_0':s6_0(n1106_0), gen_0':s6_0(b)) -> gen_0':s6_0(*(n1106_0, b)), rt in Omega(1 + b*n1106_0 + n1106_0) Generator Equations: gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(entry(0'), gen_nil:cons5_0(x)) gen_0':s6_0(0) <=> 0' gen_0':s6_0(+(x, 1)) <=> s(gen_0':s6_0(x)) The following defined symbols remain to be analysed: if2, gen They will be analysed ascendingly in the following order: gen = if2