/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 262 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 70 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, s(y)) -> 0 minus(s(x), s(y)) -> minus(x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0) -> 0 mod(x, s(y)) -> help(x, s(y), 0) help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, minus, plus, help They will be analysed ascendingly in the following order: le < help minus < help plus < help ---------------------------------------- (6) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, plus, help They will be analysed ascendingly in the following order: le < help minus < help plus < help ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, plus, help They will be analysed ascendingly in the following order: le < help minus < help plus < help ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, plus, help They will be analysed ascendingly in the following order: minus < help plus < help ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) -> gen_0':s3_0(0), rt in Omega(1 + n270_0) Induction Base: minus(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: minus(gen_0':s3_0(+(n270_0, 1)), gen_0':s3_0(+(n270_0, 1))) ->_R^Omega(1) minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) -> gen_0':s3_0(0), rt in Omega(1 + n270_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, help They will be analysed ascendingly in the following order: plus < help ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(a), gen_0':s3_0(n657_0)) -> gen_0':s3_0(+(n657_0, a)), rt in Omega(1 + n657_0) Induction Base: plus(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(a) Induction Step: plus(gen_0':s3_0(a), gen_0':s3_0(+(n657_0, 1))) ->_R^Omega(1) s(plus(gen_0':s3_0(a), gen_0':s3_0(n657_0))) ->_IH s(gen_0':s3_0(+(a, c658_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', s(y)) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) mod(s(x), 0') -> 0' mod(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(le(c, x), x, s(y), c) if(true, x, s(y), c) -> help(x, s(y), plus(c, s(y))) if(false, x, s(y), c) -> minus(x, minus(c, s(y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) minus(gen_0':s3_0(n270_0), gen_0':s3_0(n270_0)) -> gen_0':s3_0(0), rt in Omega(1 + n270_0) plus(gen_0':s3_0(a), gen_0':s3_0(n657_0)) -> gen_0':s3_0(+(n657_0, a)), rt in Omega(1 + n657_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: help