/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 260 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 67 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^2, INF) (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, plus, times, loop They will be analysed ascendingly in the following order: le < loop plus < times times < loop ---------------------------------------- (6) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError Generator Equations: gen_s:0':baseError:logZeroError3_0(0) <=> 0' gen_s:0':baseError:logZeroError3_0(+(x, 1)) <=> s(gen_s:0':baseError:logZeroError3_0(x)) The following defined symbols remain to be analysed: le, plus, times, loop They will be analysed ascendingly in the following order: le < loop plus < times times < loop ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: le(gen_s:0':baseError:logZeroError3_0(+(1, 0)), gen_s:0':baseError:logZeroError3_0(0)) ->_R^Omega(1) false Induction Step: le(gen_s:0':baseError:logZeroError3_0(+(1, +(n5_0, 1))), gen_s:0':baseError:logZeroError3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError Generator Equations: gen_s:0':baseError:logZeroError3_0(0) <=> 0' gen_s:0':baseError:logZeroError3_0(+(x, 1)) <=> s(gen_s:0':baseError:logZeroError3_0(x)) The following defined symbols remain to be analysed: le, plus, times, loop They will be analysed ascendingly in the following order: le < loop plus < times times < loop ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError Lemmas: le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_s:0':baseError:logZeroError3_0(0) <=> 0' gen_s:0':baseError:logZeroError3_0(+(x, 1)) <=> s(gen_s:0':baseError:logZeroError3_0(x)) The following defined symbols remain to be analysed: plus, times, loop They will be analysed ascendingly in the following order: plus < times times < loop ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0':baseError:logZeroError3_0(n276_0), gen_s:0':baseError:logZeroError3_0(b)) -> gen_s:0':baseError:logZeroError3_0(+(n276_0, b)), rt in Omega(1 + n276_0) Induction Base: plus(gen_s:0':baseError:logZeroError3_0(0), gen_s:0':baseError:logZeroError3_0(b)) ->_R^Omega(1) gen_s:0':baseError:logZeroError3_0(b) Induction Step: plus(gen_s:0':baseError:logZeroError3_0(+(n276_0, 1)), gen_s:0':baseError:logZeroError3_0(b)) ->_R^Omega(1) s(plus(gen_s:0':baseError:logZeroError3_0(n276_0), gen_s:0':baseError:logZeroError3_0(b))) ->_IH s(gen_s:0':baseError:logZeroError3_0(+(b, c277_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError Lemmas: le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) plus(gen_s:0':baseError:logZeroError3_0(n276_0), gen_s:0':baseError:logZeroError3_0(b)) -> gen_s:0':baseError:logZeroError3_0(+(n276_0, b)), rt in Omega(1 + n276_0) Generator Equations: gen_s:0':baseError:logZeroError3_0(0) <=> 0' gen_s:0':baseError:logZeroError3_0(+(x, 1)) <=> s(gen_s:0':baseError:logZeroError3_0(x)) The following defined symbols remain to be analysed: times, loop They will be analysed ascendingly in the following order: times < loop ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_s:0':baseError:logZeroError3_0(n873_0), gen_s:0':baseError:logZeroError3_0(b)) -> gen_s:0':baseError:logZeroError3_0(*(n873_0, b)), rt in Omega(1 + b*n873_0 + n873_0) Induction Base: times(gen_s:0':baseError:logZeroError3_0(0), gen_s:0':baseError:logZeroError3_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_s:0':baseError:logZeroError3_0(+(n873_0, 1)), gen_s:0':baseError:logZeroError3_0(b)) ->_R^Omega(1) plus(gen_s:0':baseError:logZeroError3_0(b), times(gen_s:0':baseError:logZeroError3_0(n873_0), gen_s:0':baseError:logZeroError3_0(b))) ->_IH plus(gen_s:0':baseError:logZeroError3_0(b), gen_s:0':baseError:logZeroError3_0(*(c874_0, b))) ->_L^Omega(1 + b) gen_s:0':baseError:logZeroError3_0(+(b, *(n873_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError Lemmas: le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) plus(gen_s:0':baseError:logZeroError3_0(n276_0), gen_s:0':baseError:logZeroError3_0(b)) -> gen_s:0':baseError:logZeroError3_0(+(n276_0, b)), rt in Omega(1 + n276_0) Generator Equations: gen_s:0':baseError:logZeroError3_0(0) <=> 0' gen_s:0':baseError:logZeroError3_0(+(x, 1)) <=> s(gen_s:0':baseError:logZeroError3_0(x)) The following defined symbols remain to be analysed: times, loop They will be analysed ascendingly in the following order: times < loop ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^2, INF) ---------------------------------------- (20) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) log(x, 0') -> baseError log(x, s(0')) -> baseError log(0', s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0'), 0') loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Types: le :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> false:true s :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError 0' :: s:0':baseError:logZeroError false :: false:true true :: false:true plus :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError times :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError log :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError baseError :: s:0':baseError:logZeroError logZeroError :: s:0':baseError:logZeroError loop :: s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError if :: false:true -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError -> s:0':baseError:logZeroError hole_false:true1_0 :: false:true hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError gen_s:0':baseError:logZeroError3_0 :: Nat -> s:0':baseError:logZeroError Lemmas: le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) plus(gen_s:0':baseError:logZeroError3_0(n276_0), gen_s:0':baseError:logZeroError3_0(b)) -> gen_s:0':baseError:logZeroError3_0(+(n276_0, b)), rt in Omega(1 + n276_0) times(gen_s:0':baseError:logZeroError3_0(n873_0), gen_s:0':baseError:logZeroError3_0(b)) -> gen_s:0':baseError:logZeroError3_0(*(n873_0, b)), rt in Omega(1 + b*n873_0 + n873_0) Generator Equations: gen_s:0':baseError:logZeroError3_0(0) <=> 0' gen_s:0':baseError:logZeroError3_0(+(x, 1)) <=> s(gen_s:0':baseError:logZeroError3_0(x)) The following defined symbols remain to be analysed: loop