/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 267 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 73 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0) help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0' S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0' Types: lt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: lt, plus, help They will be analysed ascendingly in the following order: lt < help plus < help ---------------------------------------- (6) Obligation: TRS: Rules: lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0' Types: lt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, plus, help They will be analysed ascendingly in the following order: lt < help plus < help ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: lt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) false Induction Step: lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0' Types: lt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, plus, help They will be analysed ascendingly in the following order: lt < help plus < help ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0' Types: lt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, help They will be analysed ascendingly in the following order: plus < help ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(a), gen_0':s3_0(n245_0)) -> gen_0':s3_0(+(n245_0, a)), rt in Omega(1 + n245_0) Induction Base: plus(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(a) Induction Step: plus(gen_0':s3_0(a), gen_0':s3_0(+(n245_0, 1))) ->_R^Omega(1) s(plus(gen_0':s3_0(a), gen_0':s3_0(n245_0))) ->_IH s(gen_0':s3_0(+(a, c246_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) quot(x, s(y)) -> help(x, s(y), 0') help(x, s(y), c) -> if(lt(c, x), x, s(y), c) if(true, x, s(y), c) -> s(help(x, s(y), plus(c, s(y)))) if(false, x, s(y), c) -> 0' Types: lt :: 0':s -> 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true plus :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s help :: 0':s -> 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) plus(gen_0':s3_0(a), gen_0':s3_0(n245_0)) -> gen_0':s3_0(+(n245_0, a)), rt in Omega(1 + n245_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: help