/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 267 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 11 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 1183 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0 size(edge(x, y, i)) -> s(size(i)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0, i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: eq, size, le, reach, if2 They will be analysed ascendingly in the following order: eq < reach eq < if2 size < reach le < reach reach = if2 ---------------------------------------- (6) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: eq, size, le, reach, if2 They will be analysed ascendingly in the following order: eq < reach eq < if2 size < reach le < reach reach = if2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: eq, size, le, reach, if2 They will be analysed ascendingly in the following order: eq < reach eq < if2 size < reach le < reach reach = if2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: size, le, reach, if2 They will be analysed ascendingly in the following order: size < reach le < reach reach = if2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: size(gen_empty:edge5_0(n530_0)) -> gen_0':s4_0(n530_0), rt in Omega(1 + n530_0) Induction Base: size(gen_empty:edge5_0(0)) ->_R^Omega(1) 0' Induction Step: size(gen_empty:edge5_0(+(n530_0, 1))) ->_R^Omega(1) s(size(gen_empty:edge5_0(n530_0))) ->_IH s(gen_0':s4_0(c531_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) size(gen_empty:edge5_0(n530_0)) -> gen_0':s4_0(n530_0), rt in Omega(1 + n530_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: le, reach, if2 They will be analysed ascendingly in the following order: le < reach reach = if2 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s4_0(n804_0), gen_0':s4_0(n804_0)) -> true, rt in Omega(1 + n804_0) Induction Base: le(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s4_0(+(n804_0, 1)), gen_0':s4_0(+(n804_0, 1))) ->_R^Omega(1) le(gen_0':s4_0(n804_0), gen_0':s4_0(n804_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) size(gen_empty:edge5_0(n530_0)) -> gen_0':s4_0(n530_0), rt in Omega(1 + n530_0) le(gen_0':s4_0(n804_0), gen_0':s4_0(n804_0)) -> true, rt in Omega(1 + n804_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: if2, reach They will be analysed ascendingly in the following order: reach = if2 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: if2(true, gen_0':s4_0(0), gen_0':s4_0(0), gen_0':s4_0(c), gen_empty:edge5_0(n1127_0), gen_empty:edge5_0(e)) -> *6_0, rt in Omega(n1127_0) Induction Base: if2(true, gen_0':s4_0(0), gen_0':s4_0(0), gen_0':s4_0(c), gen_empty:edge5_0(0), gen_empty:edge5_0(e)) Induction Step: if2(true, gen_0':s4_0(0), gen_0':s4_0(0), gen_0':s4_0(c), gen_empty:edge5_0(+(n1127_0, 1)), gen_empty:edge5_0(e)) ->_R^Omega(1) or(if2(true, gen_0':s4_0(0), gen_0':s4_0(0), gen_0':s4_0(c), gen_empty:edge5_0(n1127_0), gen_empty:edge5_0(e)), and(eq(gen_0':s4_0(0), 0'), reach(0', gen_0':s4_0(0), s(gen_0':s4_0(c)), gen_empty:edge5_0(e), gen_empty:edge5_0(e)))) ->_IH or(*6_0, and(eq(gen_0':s4_0(0), 0'), reach(0', gen_0':s4_0(0), s(gen_0':s4_0(c)), gen_empty:edge5_0(e), gen_empty:edge5_0(e)))) ->_L^Omega(1) or(*6_0, and(true, reach(0', gen_0':s4_0(0), s(gen_0':s4_0(c)), gen_empty:edge5_0(e), gen_empty:edge5_0(e)))) ->_R^Omega(1) or(*6_0, and(true, if1(eq(0', gen_0':s4_0(0)), 0', gen_0':s4_0(0), s(gen_0':s4_0(c)), gen_empty:edge5_0(e), gen_empty:edge5_0(e)))) ->_L^Omega(1) or(*6_0, and(true, if1(true, 0', gen_0':s4_0(0), s(gen_0':s4_0(c)), gen_empty:edge5_0(e), gen_empty:edge5_0(e)))) ->_R^Omega(1) or(*6_0, and(true, true)) ->_R^Omega(1) or(*6_0, true) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0' size(edge(x, y, i)) -> s(size(i)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0', i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false and :: true:false -> true:false -> true:false size :: empty:edge -> 0':s empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge le :: 0':s -> 0':s -> true:false reachable :: 0':s -> 0':s -> empty:edge -> true:false reach :: 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if1 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) size(gen_empty:edge5_0(n530_0)) -> gen_0':s4_0(n530_0), rt in Omega(1 + n530_0) le(gen_0':s4_0(n804_0), gen_0':s4_0(n804_0)) -> true, rt in Omega(1 + n804_0) if2(true, gen_0':s4_0(0), gen_0':s4_0(0), gen_0':s4_0(c), gen_empty:edge5_0(n1127_0), gen_empty:edge5_0(e)) -> *6_0, rt in Omega(n1127_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: reach They will be analysed ascendingly in the following order: reach = if2