/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 255 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 583 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 226 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^2, INF) (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0) -> true zero(s(x)) -> false p(0) -> 0 p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, x, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, x, y) -> cons(0, nil) if1(false, x, y) -> cons(0, int(s(0), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, x, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, x, y) -> cons(0', nil) if1(false, x, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: if1/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: p, intlist, int, if1 They will be analysed ascendingly in the following order: p < int intlist < int int = if1 ---------------------------------------- (8) Obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: p, intlist, int, if1 They will be analysed ascendingly in the following order: p < int intlist < int int = if1 ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) Induction Base: p(gen_0':s5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s5_0(+(1, +(n7_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s5_0(n7_0)))) ->_IH s(gen_0':s5_0(c8_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: p, intlist, int, if1 They will be analysed ascendingly in the following order: p < int intlist < int int = if1 ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: intlist, int, if1 They will be analysed ascendingly in the following order: intlist < int int = if1 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: intlist(gen_nil:cons4_0(n312_0)) -> *6_0, rt in Omega(n312_0) Induction Base: intlist(gen_nil:cons4_0(0)) Induction Step: intlist(gen_nil:cons4_0(+(n312_0, 1))) ->_R^Omega(1) if_intlist(empty(gen_nil:cons4_0(+(n312_0, 1))), gen_nil:cons4_0(+(n312_0, 1))) ->_R^Omega(1) if_intlist(false, gen_nil:cons4_0(+(1, n312_0))) ->_R^Omega(1) cons(s(head(gen_nil:cons4_0(+(1, n312_0)))), intlist(tail(gen_nil:cons4_0(+(1, n312_0))))) ->_R^Omega(1) cons(s(0'), intlist(tail(gen_nil:cons4_0(+(1, n312_0))))) ->_R^Omega(1) cons(s(0'), intlist(gen_nil:cons4_0(n312_0))) ->_IH cons(s(0'), *6_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) intlist(gen_nil:cons4_0(n312_0)) -> *6_0, rt in Omega(n312_0) Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: if1, int They will be analysed ascendingly in the following order: int = if1 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: int(gen_0':s5_0(+(1, n5442_0)), gen_0':s5_0(n5442_0)) -> gen_nil:cons4_0(0), rt in Omega(1 + n5442_0 + n5442_0^2) Induction Base: int(gen_0':s5_0(+(1, 0)), gen_0':s5_0(0)) ->_R^Omega(1) if_int(zero(gen_0':s5_0(+(1, 0))), zero(gen_0':s5_0(0)), gen_0':s5_0(+(1, 0)), gen_0':s5_0(0)) ->_R^Omega(1) if_int(false, zero(gen_0':s5_0(0)), gen_0':s5_0(1), gen_0':s5_0(0)) ->_R^Omega(1) if_int(false, true, gen_0':s5_0(1), gen_0':s5_0(0)) ->_R^Omega(1) if2(true, gen_0':s5_0(1), gen_0':s5_0(0)) ->_R^Omega(1) nil Induction Step: int(gen_0':s5_0(+(1, +(n5442_0, 1))), gen_0':s5_0(+(n5442_0, 1))) ->_R^Omega(1) if_int(zero(gen_0':s5_0(+(1, +(n5442_0, 1)))), zero(gen_0':s5_0(+(n5442_0, 1))), gen_0':s5_0(+(1, +(n5442_0, 1))), gen_0':s5_0(+(n5442_0, 1))) ->_R^Omega(1) if_int(false, zero(gen_0':s5_0(+(1, n5442_0))), gen_0':s5_0(+(2, n5442_0)), gen_0':s5_0(+(1, n5442_0))) ->_R^Omega(1) if_int(false, false, gen_0':s5_0(+(2, n5442_0)), gen_0':s5_0(+(1, n5442_0))) ->_R^Omega(1) if2(false, gen_0':s5_0(+(2, n5442_0)), gen_0':s5_0(+(1, n5442_0))) ->_R^Omega(1) intlist(int(p(gen_0':s5_0(+(2, n5442_0))), p(gen_0':s5_0(+(1, n5442_0))))) ->_L^Omega(2 + n5442_0) intlist(int(gen_0':s5_0(+(1, n5442_0)), p(gen_0':s5_0(+(1, n5442_0))))) ->_L^Omega(1 + n5442_0) intlist(int(gen_0':s5_0(+(1, n5442_0)), gen_0':s5_0(n5442_0))) ->_IH intlist(gen_nil:cons4_0(0)) ->_R^Omega(1) if_intlist(empty(gen_nil:cons4_0(0)), gen_nil:cons4_0(0)) ->_R^Omega(1) if_intlist(true, gen_nil:cons4_0(0)) ->_R^Omega(1) nil We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) intlist(gen_nil:cons4_0(n312_0)) -> *6_0, rt in Omega(n312_0) Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: int They will be analysed ascendingly in the following order: int = if1 ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^2, INF) ---------------------------------------- (22) Obligation: TRS: Rules: empty(nil) -> true empty(cons(x, y)) -> false tail(nil) -> nil tail(cons(x, y)) -> y head(cons(x, y)) -> x zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) intlist(x) -> if_intlist(empty(x), x) if_intlist(true, x) -> nil if_intlist(false, x) -> cons(s(head(x)), intlist(tail(x))) int(x, y) -> if_int(zero(x), zero(y), x, y) if_int(true, b, x, y) -> if1(b, y) if_int(false, b, x, y) -> if2(b, x, y) if1(true, y) -> cons(0', nil) if1(false, y) -> cons(0', int(s(0'), y)) if2(true, x, y) -> nil if2(false, x, y) -> intlist(int(p(x), p(y))) Types: empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: 0':s -> nil:cons -> nil:cons false :: true:false tail :: nil:cons -> nil:cons head :: nil:cons -> 0':s zero :: 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s intlist :: nil:cons -> nil:cons if_intlist :: true:false -> nil:cons -> nil:cons int :: 0':s -> 0':s -> nil:cons if_int :: true:false -> true:false -> 0':s -> 0':s -> nil:cons if1 :: true:false -> 0':s -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_0':s3_0 :: 0':s gen_nil:cons4_0 :: Nat -> nil:cons gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) intlist(gen_nil:cons4_0(n312_0)) -> *6_0, rt in Omega(n312_0) int(gen_0':s5_0(+(1, n5442_0)), gen_0':s5_0(n5442_0)) -> gen_nil:cons4_0(0), rt in Omega(1 + n5442_0 + n5442_0^2) Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: if1 They will be analysed ascendingly in the following order: int = if1