/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 301 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 43 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(0) -> 0 inc(s(x)) -> s(inc(x)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0) log2(x, y) -> if(le(x, 0), le(x, s(0)), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0))), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) Types: le :: 0':s:log_undefined -> 0':s:log_undefined -> true:false 0' :: 0':s:log_undefined true :: true:false s :: 0':s:log_undefined -> 0':s:log_undefined false :: true:false inc :: 0':s:log_undefined -> 0':s:log_undefined minus :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined quot :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log :: 0':s:log_undefined -> 0':s:log_undefined log2 :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined if :: true:false -> true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log_undefined :: 0':s:log_undefined if2 :: true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined hole_true:false1_0 :: true:false hole_0':s:log_undefined2_0 :: 0':s:log_undefined gen_0':s:log_undefined3_0 :: Nat -> 0':s:log_undefined ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, inc, minus, quot, log2 They will be analysed ascendingly in the following order: le < log2 inc < log2 minus < quot quot < log2 ---------------------------------------- (6) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) Types: le :: 0':s:log_undefined -> 0':s:log_undefined -> true:false 0' :: 0':s:log_undefined true :: true:false s :: 0':s:log_undefined -> 0':s:log_undefined false :: true:false inc :: 0':s:log_undefined -> 0':s:log_undefined minus :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined quot :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log :: 0':s:log_undefined -> 0':s:log_undefined log2 :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined if :: true:false -> true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log_undefined :: 0':s:log_undefined if2 :: true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined hole_true:false1_0 :: true:false hole_0':s:log_undefined2_0 :: 0':s:log_undefined gen_0':s:log_undefined3_0 :: Nat -> 0':s:log_undefined Generator Equations: gen_0':s:log_undefined3_0(0) <=> 0' gen_0':s:log_undefined3_0(+(x, 1)) <=> s(gen_0':s:log_undefined3_0(x)) The following defined symbols remain to be analysed: le, inc, minus, quot, log2 They will be analysed ascendingly in the following order: le < log2 inc < log2 minus < quot quot < log2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_0':s:log_undefined3_0(0), gen_0':s:log_undefined3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s:log_undefined3_0(+(n5_0, 1)), gen_0':s:log_undefined3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) Types: le :: 0':s:log_undefined -> 0':s:log_undefined -> true:false 0' :: 0':s:log_undefined true :: true:false s :: 0':s:log_undefined -> 0':s:log_undefined false :: true:false inc :: 0':s:log_undefined -> 0':s:log_undefined minus :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined quot :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log :: 0':s:log_undefined -> 0':s:log_undefined log2 :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined if :: true:false -> true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log_undefined :: 0':s:log_undefined if2 :: true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined hole_true:false1_0 :: true:false hole_0':s:log_undefined2_0 :: 0':s:log_undefined gen_0':s:log_undefined3_0 :: Nat -> 0':s:log_undefined Generator Equations: gen_0':s:log_undefined3_0(0) <=> 0' gen_0':s:log_undefined3_0(+(x, 1)) <=> s(gen_0':s:log_undefined3_0(x)) The following defined symbols remain to be analysed: le, inc, minus, quot, log2 They will be analysed ascendingly in the following order: le < log2 inc < log2 minus < quot quot < log2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) Types: le :: 0':s:log_undefined -> 0':s:log_undefined -> true:false 0' :: 0':s:log_undefined true :: true:false s :: 0':s:log_undefined -> 0':s:log_undefined false :: true:false inc :: 0':s:log_undefined -> 0':s:log_undefined minus :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined quot :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log :: 0':s:log_undefined -> 0':s:log_undefined log2 :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined if :: true:false -> true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log_undefined :: 0':s:log_undefined if2 :: true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined hole_true:false1_0 :: true:false hole_0':s:log_undefined2_0 :: 0':s:log_undefined gen_0':s:log_undefined3_0 :: Nat -> 0':s:log_undefined Lemmas: le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s:log_undefined3_0(0) <=> 0' gen_0':s:log_undefined3_0(+(x, 1)) <=> s(gen_0':s:log_undefined3_0(x)) The following defined symbols remain to be analysed: inc, minus, quot, log2 They will be analysed ascendingly in the following order: inc < log2 minus < quot quot < log2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s:log_undefined3_0(n288_0)) -> gen_0':s:log_undefined3_0(n288_0), rt in Omega(1 + n288_0) Induction Base: inc(gen_0':s:log_undefined3_0(0)) ->_R^Omega(1) 0' Induction Step: inc(gen_0':s:log_undefined3_0(+(n288_0, 1))) ->_R^Omega(1) s(inc(gen_0':s:log_undefined3_0(n288_0))) ->_IH s(gen_0':s:log_undefined3_0(c289_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) Types: le :: 0':s:log_undefined -> 0':s:log_undefined -> true:false 0' :: 0':s:log_undefined true :: true:false s :: 0':s:log_undefined -> 0':s:log_undefined false :: true:false inc :: 0':s:log_undefined -> 0':s:log_undefined minus :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined quot :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log :: 0':s:log_undefined -> 0':s:log_undefined log2 :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined if :: true:false -> true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log_undefined :: 0':s:log_undefined if2 :: true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined hole_true:false1_0 :: true:false hole_0':s:log_undefined2_0 :: 0':s:log_undefined gen_0':s:log_undefined3_0 :: Nat -> 0':s:log_undefined Lemmas: le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) -> true, rt in Omega(1 + n5_0) inc(gen_0':s:log_undefined3_0(n288_0)) -> gen_0':s:log_undefined3_0(n288_0), rt in Omega(1 + n288_0) Generator Equations: gen_0':s:log_undefined3_0(0) <=> 0' gen_0':s:log_undefined3_0(+(x, 1)) <=> s(gen_0':s:log_undefined3_0(x)) The following defined symbols remain to be analysed: minus, quot, log2 They will be analysed ascendingly in the following order: minus < quot quot < log2 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s:log_undefined3_0(n502_0), gen_0':s:log_undefined3_0(n502_0)) -> gen_0':s:log_undefined3_0(0), rt in Omega(1 + n502_0) Induction Base: minus(gen_0':s:log_undefined3_0(0), gen_0':s:log_undefined3_0(0)) ->_R^Omega(1) 0' Induction Step: minus(gen_0':s:log_undefined3_0(+(n502_0, 1)), gen_0':s:log_undefined3_0(+(n502_0, 1))) ->_R^Omega(1) minus(gen_0':s:log_undefined3_0(n502_0), gen_0':s:log_undefined3_0(n502_0)) ->_IH gen_0':s:log_undefined3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(0') -> 0' inc(s(x)) -> s(inc(x)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(x) -> log2(x, 0') log2(x, y) -> if(le(x, 0'), le(x, s(0')), x, inc(y)) if(true, b, x, y) -> log_undefined if(false, b, x, y) -> if2(b, x, y) if2(true, x, s(y)) -> y if2(false, x, y) -> log2(quot(x, s(s(0'))), y) Types: le :: 0':s:log_undefined -> 0':s:log_undefined -> true:false 0' :: 0':s:log_undefined true :: true:false s :: 0':s:log_undefined -> 0':s:log_undefined false :: true:false inc :: 0':s:log_undefined -> 0':s:log_undefined minus :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined quot :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log :: 0':s:log_undefined -> 0':s:log_undefined log2 :: 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined if :: true:false -> true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined log_undefined :: 0':s:log_undefined if2 :: true:false -> 0':s:log_undefined -> 0':s:log_undefined -> 0':s:log_undefined hole_true:false1_0 :: true:false hole_0':s:log_undefined2_0 :: 0':s:log_undefined gen_0':s:log_undefined3_0 :: Nat -> 0':s:log_undefined Lemmas: le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) -> true, rt in Omega(1 + n5_0) inc(gen_0':s:log_undefined3_0(n288_0)) -> gen_0':s:log_undefined3_0(n288_0), rt in Omega(1 + n288_0) minus(gen_0':s:log_undefined3_0(n502_0), gen_0':s:log_undefined3_0(n502_0)) -> gen_0':s:log_undefined3_0(0), rt in Omega(1 + n502_0) Generator Equations: gen_0':s:log_undefined3_0(0) <=> 0' gen_0':s:log_undefined3_0(+(x, 1)) <=> s(gen_0':s:log_undefined3_0(x)) The following defined symbols remain to be analysed: quot, log2 They will be analysed ascendingly in the following order: quot < log2