/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 262 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 73 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 133 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lcm(x, y) -> lcmIter(x, y, 0, times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0, x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0, x), x, y) ifTimes(true, x, y) -> 0 ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0) -> s(s(0)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0, s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0) -> divisible(x, y) div(0, y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c Types: lcm :: 0':s -> 0':s -> 0':s lcmIter :: 0':s -> 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s times :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s or :: true:false -> true:false -> true:false ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s divisible :: 0':s -> 0':s -> true:false plus :: 0':s -> 0':s -> 0':s s :: 0':s -> 0':s ifTimes :: true:false -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> true:false a :: b:c b :: b:c c :: b:c hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_b:c3_0 :: b:c gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: lcmIter, times, ge, divisible, plus, div They will be analysed ascendingly in the following order: ge < lcmIter divisible < lcmIter plus < lcmIter ge < times plus < times divisible = div ---------------------------------------- (6) Obligation: TRS: Rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c Types: lcm :: 0':s -> 0':s -> 0':s lcmIter :: 0':s -> 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s times :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s or :: true:false -> true:false -> true:false ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s divisible :: 0':s -> 0':s -> true:false plus :: 0':s -> 0':s -> 0':s s :: 0':s -> 0':s ifTimes :: true:false -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> true:false a :: b:c b :: b:c c :: b:c hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_b:c3_0 :: b:c gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: ge, lcmIter, times, divisible, plus, div They will be analysed ascendingly in the following order: ge < lcmIter divisible < lcmIter plus < lcmIter ge < times plus < times divisible = div ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> true, rt in Omega(1 + n6_0) Induction Base: ge(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) ge(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c Types: lcm :: 0':s -> 0':s -> 0':s lcmIter :: 0':s -> 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s times :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s or :: true:false -> true:false -> true:false ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s divisible :: 0':s -> 0':s -> true:false plus :: 0':s -> 0':s -> 0':s s :: 0':s -> 0':s ifTimes :: true:false -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> true:false a :: b:c b :: b:c c :: b:c hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_b:c3_0 :: b:c gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: ge, lcmIter, times, divisible, plus, div They will be analysed ascendingly in the following order: ge < lcmIter divisible < lcmIter plus < lcmIter ge < times plus < times divisible = div ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c Types: lcm :: 0':s -> 0':s -> 0':s lcmIter :: 0':s -> 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s times :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s or :: true:false -> true:false -> true:false ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s divisible :: 0':s -> 0':s -> true:false plus :: 0':s -> 0':s -> 0':s s :: 0':s -> 0':s ifTimes :: true:false -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> true:false a :: b:c b :: b:c c :: b:c hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_b:c3_0 :: b:c gen_0':s4_0 :: Nat -> 0':s Lemmas: ge(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> true, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: plus, lcmIter, times, divisible, div They will be analysed ascendingly in the following order: divisible < lcmIter plus < lcmIter plus < times divisible = div ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s4_0(n342_0), gen_0':s4_0(b)) -> gen_0':s4_0(+(n342_0, b)), rt in Omega(1 + n342_0) Induction Base: plus(gen_0':s4_0(0), gen_0':s4_0(b)) ->_R^Omega(1) gen_0':s4_0(b) Induction Step: plus(gen_0':s4_0(+(n342_0, 1)), gen_0':s4_0(b)) ->_R^Omega(1) s(plus(gen_0':s4_0(n342_0), gen_0':s4_0(b))) ->_IH s(gen_0':s4_0(+(b, c343_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c Types: lcm :: 0':s -> 0':s -> 0':s lcmIter :: 0':s -> 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s times :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s or :: true:false -> true:false -> true:false ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s divisible :: 0':s -> 0':s -> true:false plus :: 0':s -> 0':s -> 0':s s :: 0':s -> 0':s ifTimes :: true:false -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> true:false a :: b:c b :: b:c c :: b:c hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_b:c3_0 :: b:c gen_0':s4_0 :: Nat -> 0':s Lemmas: ge(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> true, rt in Omega(1 + n6_0) plus(gen_0':s4_0(n342_0), gen_0':s4_0(b)) -> gen_0':s4_0(+(n342_0, b)), rt in Omega(1 + n342_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: times, lcmIter, divisible, div They will be analysed ascendingly in the following order: divisible < lcmIter divisible = div ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: div(gen_0':s4_0(n1203_0), gen_0':s4_0(b), gen_0':s4_0(+(1, n1203_0))) -> false, rt in Omega(1 + n1203_0) Induction Base: div(gen_0':s4_0(0), gen_0':s4_0(b), gen_0':s4_0(+(1, 0))) ->_R^Omega(1) false Induction Step: div(gen_0':s4_0(+(n1203_0, 1)), gen_0':s4_0(b), gen_0':s4_0(+(1, +(n1203_0, 1)))) ->_R^Omega(1) div(gen_0':s4_0(n1203_0), gen_0':s4_0(b), gen_0':s4_0(+(1, n1203_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: lcm(x, y) -> lcmIter(x, y, 0', times(x, y)) lcmIter(x, y, z, u) -> if(or(ge(0', x), ge(z, u)), x, y, z, u) if(true, x, y, z, u) -> z if(false, x, y, z, u) -> if2(divisible(z, y), x, y, z, u) if2(true, x, y, z, u) -> z if2(false, x, y, z, u) -> lcmIter(x, y, plus(x, z), u) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> ifTimes(ge(0', x), x, y) ifTimes(true, x, y) -> 0' ifTimes(false, x, y) -> plus(y, times(y, p(x))) p(s(x)) -> x p(0') -> s(s(0')) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) or(true, y) -> true or(false, y) -> y divisible(0', s(y)) -> true divisible(s(x), s(y)) -> div(s(x), s(y), s(y)) div(x, y, 0') -> divisible(x, y) div(0', y, s(z)) -> false div(s(x), y, s(z)) -> div(x, y, z) a -> b a -> c Types: lcm :: 0':s -> 0':s -> 0':s lcmIter :: 0':s -> 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s times :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s or :: true:false -> true:false -> true:false ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if2 :: true:false -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s divisible :: 0':s -> 0':s -> true:false plus :: 0':s -> 0':s -> 0':s s :: 0':s -> 0':s ifTimes :: true:false -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> true:false a :: b:c b :: b:c c :: b:c hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_b:c3_0 :: b:c gen_0':s4_0 :: Nat -> 0':s Lemmas: ge(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> true, rt in Omega(1 + n6_0) plus(gen_0':s4_0(n342_0), gen_0':s4_0(b)) -> gen_0':s4_0(+(n342_0, b)), rt in Omega(1 + n342_0) div(gen_0':s4_0(n1203_0), gen_0':s4_0(b), gen_0':s4_0(+(1, n1203_0))) -> false, rt in Omega(1 + n1203_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: divisible, lcmIter They will be analysed ascendingly in the following order: divisible < lcmIter divisible = div