/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 233 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 83 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 148 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 46 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0, x, y, 0) timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0) -> true isZero(s(0)) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0) -> s(0) inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0) -> 0 p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0, y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1, z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, isZero, inc, p, timesIter, ge, f0, f1, f2 They will be analysed ascendingly in the following order: isZero < plus inc < plus p < plus plus < timesIter inc < timesIter ge < timesIter f0 = f1 f0 = f2 f1 = f2 ---------------------------------------- (6) Obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' Generator Equations: gen_0':s:1'4_3(0) <=> 0' gen_0':s:1'4_3(+(x, 1)) <=> s(gen_0':s:1'4_3(x)) The following defined symbols remain to be analysed: isZero, plus, inc, p, timesIter, ge, f0, f1, f2 They will be analysed ascendingly in the following order: isZero < plus inc < plus p < plus plus < timesIter inc < timesIter ge < timesIter f0 = f1 f0 = f2 f1 = f2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: isZero(gen_0':s:1'4_3(+(1, n6_3))) -> false, rt in Omega(1 + n6_3) Induction Base: isZero(gen_0':s:1'4_3(+(1, 0))) ->_R^Omega(1) false Induction Step: isZero(gen_0':s:1'4_3(+(1, +(n6_3, 1)))) ->_R^Omega(1) isZero(s(gen_0':s:1'4_3(n6_3))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' Generator Equations: gen_0':s:1'4_3(0) <=> 0' gen_0':s:1'4_3(+(x, 1)) <=> s(gen_0':s:1'4_3(x)) The following defined symbols remain to be analysed: isZero, plus, inc, p, timesIter, ge, f0, f1, f2 They will be analysed ascendingly in the following order: isZero < plus inc < plus p < plus plus < timesIter inc < timesIter ge < timesIter f0 = f1 f0 = f2 f1 = f2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' Lemmas: isZero(gen_0':s:1'4_3(+(1, n6_3))) -> false, rt in Omega(1 + n6_3) Generator Equations: gen_0':s:1'4_3(0) <=> 0' gen_0':s:1'4_3(+(x, 1)) <=> s(gen_0':s:1'4_3(x)) The following defined symbols remain to be analysed: inc, plus, p, timesIter, ge, f0, f1, f2 They will be analysed ascendingly in the following order: inc < plus p < plus plus < timesIter inc < timesIter ge < timesIter f0 = f1 f0 = f2 f1 = f2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s:1'4_3(n163_3)) -> gen_0':s:1'4_3(+(1, n163_3)), rt in Omega(1 + n163_3) Induction Base: inc(gen_0':s:1'4_3(0)) ->_R^Omega(1) s(0') Induction Step: inc(gen_0':s:1'4_3(+(n163_3, 1))) ->_R^Omega(1) s(inc(gen_0':s:1'4_3(n163_3))) ->_IH s(gen_0':s:1'4_3(+(1, c164_3))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' Lemmas: isZero(gen_0':s:1'4_3(+(1, n6_3))) -> false, rt in Omega(1 + n6_3) inc(gen_0':s:1'4_3(n163_3)) -> gen_0':s:1'4_3(+(1, n163_3)), rt in Omega(1 + n163_3) Generator Equations: gen_0':s:1'4_3(0) <=> 0' gen_0':s:1'4_3(+(x, 1)) <=> s(gen_0':s:1'4_3(x)) The following defined symbols remain to be analysed: p, plus, timesIter, ge, f0, f1, f2 They will be analysed ascendingly in the following order: p < plus plus < timesIter ge < timesIter f0 = f1 f0 = f2 f1 = f2 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s:1'4_3(+(2, n652_3))) -> *5_3, rt in Omega(n652_3) Induction Base: p(gen_0':s:1'4_3(+(2, 0))) Induction Step: p(gen_0':s:1'4_3(+(2, +(n652_3, 1)))) ->_R^Omega(1) s(p(s(gen_0':s:1'4_3(+(1, n652_3))))) ->_IH s(*5_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' Lemmas: isZero(gen_0':s:1'4_3(+(1, n6_3))) -> false, rt in Omega(1 + n6_3) inc(gen_0':s:1'4_3(n163_3)) -> gen_0':s:1'4_3(+(1, n163_3)), rt in Omega(1 + n163_3) p(gen_0':s:1'4_3(+(2, n652_3))) -> *5_3, rt in Omega(n652_3) Generator Equations: gen_0':s:1'4_3(0) <=> 0' gen_0':s:1'4_3(+(x, 1)) <=> s(gen_0':s:1'4_3(x)) The following defined symbols remain to be analysed: plus, timesIter, ge, f0, f1, f2 They will be analysed ascendingly in the following order: plus < timesIter ge < timesIter f0 = f1 f0 = f2 f1 = f2 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s:1'4_3(n1702_3), gen_0':s:1'4_3(n1702_3)) -> true, rt in Omega(1 + n1702_3) Induction Base: ge(gen_0':s:1'4_3(0), gen_0':s:1'4_3(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s:1'4_3(+(n1702_3, 1)), gen_0':s:1'4_3(+(n1702_3, 1))) ->_R^Omega(1) ge(gen_0':s:1'4_3(n1702_3), gen_0':s:1'4_3(n1702_3)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: plus(x, y) -> ifPlus(isZero(x), x, inc(y)) ifPlus(true, x, y) -> p(y) ifPlus(false, x, y) -> plus(p(x), y) times(x, y) -> timesIter(0', x, y, 0') timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z) ifTimes(true, i, x, y, z) -> z ifTimes(false, i, x, y, z) -> timesIter(inc(i), x, y, plus(z, y)) isZero(0') -> true isZero(s(0')) -> false isZero(s(s(x))) -> isZero(s(x)) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) inc(x) -> s(x) p(0') -> 0' p(s(x)) -> x p(s(s(x))) -> s(p(s(x))) ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) f0(0', y, x) -> f1(x, y, x) f1(x, y, z) -> f2(x, y, z) f2(x, 1', z) -> f0(x, z, z) f0(x, y, z) -> d f1(x, y, z) -> c Types: plus :: 0':s:1' -> 0':s:1' -> 0':s:1' ifPlus :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' isZero :: 0':s:1' -> true:false inc :: 0':s:1' -> 0':s:1' true :: true:false p :: 0':s:1' -> 0':s:1' false :: true:false times :: 0':s:1' -> 0':s:1' -> 0':s:1' timesIter :: 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' 0' :: 0':s:1' ifTimes :: true:false -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' -> 0':s:1' ge :: 0':s:1' -> 0':s:1' -> true:false s :: 0':s:1' -> 0':s:1' f0 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f1 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c f2 :: 0':s:1' -> 0':s:1' -> 0':s:1' -> d:c 1' :: 0':s:1' d :: d:c c :: d:c hole_0':s:1'1_3 :: 0':s:1' hole_true:false2_3 :: true:false hole_d:c3_3 :: d:c gen_0':s:1'4_3 :: Nat -> 0':s:1' Lemmas: isZero(gen_0':s:1'4_3(+(1, n6_3))) -> false, rt in Omega(1 + n6_3) inc(gen_0':s:1'4_3(n163_3)) -> gen_0':s:1'4_3(+(1, n163_3)), rt in Omega(1 + n163_3) p(gen_0':s:1'4_3(+(2, n652_3))) -> *5_3, rt in Omega(n652_3) ge(gen_0':s:1'4_3(n1702_3), gen_0':s:1'4_3(n1702_3)) -> true, rt in Omega(1 + n1702_3) Generator Equations: gen_0':s:1'4_3(0) <=> 0' gen_0':s:1'4_3(+(x, 1)) <=> s(gen_0':s:1'4_3(x)) The following defined symbols remain to be analysed: timesIter, f0, f1, f2 They will be analysed ascendingly in the following order: f0 = f1 f0 = f2 f1 = f2