/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 244 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 96 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 490 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 32 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, double, loop, mapIter, droplast, last They will be analysed ascendingly in the following order: le < loop double < loop droplast < mapIter last < mapIter ---------------------------------------- (6) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons Generator Equations: gen_s:0':logError:error5_0(0) <=> 0' gen_s:0':logError:error5_0(+(x, 1)) <=> s(gen_s:0':logError:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: le, double, loop, mapIter, droplast, last They will be analysed ascendingly in the following order: le < loop double < loop droplast < mapIter last < mapIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_s:0':logError:error5_0(+(1, n8_0)), gen_s:0':logError:error5_0(n8_0)) -> false, rt in Omega(1 + n8_0) Induction Base: le(gen_s:0':logError:error5_0(+(1, 0)), gen_s:0':logError:error5_0(0)) ->_R^Omega(1) false Induction Step: le(gen_s:0':logError:error5_0(+(1, +(n8_0, 1))), gen_s:0':logError:error5_0(+(n8_0, 1))) ->_R^Omega(1) le(gen_s:0':logError:error5_0(+(1, n8_0)), gen_s:0':logError:error5_0(n8_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons Generator Equations: gen_s:0':logError:error5_0(0) <=> 0' gen_s:0':logError:error5_0(+(x, 1)) <=> s(gen_s:0':logError:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: le, double, loop, mapIter, droplast, last They will be analysed ascendingly in the following order: le < loop double < loop droplast < mapIter last < mapIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: le(gen_s:0':logError:error5_0(+(1, n8_0)), gen_s:0':logError:error5_0(n8_0)) -> false, rt in Omega(1 + n8_0) Generator Equations: gen_s:0':logError:error5_0(0) <=> 0' gen_s:0':logError:error5_0(+(x, 1)) <=> s(gen_s:0':logError:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: double, loop, mapIter, droplast, last They will be analysed ascendingly in the following order: double < loop droplast < mapIter last < mapIter ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_s:0':logError:error5_0(n341_0)) -> gen_s:0':logError:error5_0(*(2, n341_0)), rt in Omega(1 + n341_0) Induction Base: double(gen_s:0':logError:error5_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_s:0':logError:error5_0(+(n341_0, 1))) ->_R^Omega(1) s(s(double(gen_s:0':logError:error5_0(n341_0)))) ->_IH s(s(gen_s:0':logError:error5_0(*(2, c342_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: le(gen_s:0':logError:error5_0(+(1, n8_0)), gen_s:0':logError:error5_0(n8_0)) -> false, rt in Omega(1 + n8_0) double(gen_s:0':logError:error5_0(n341_0)) -> gen_s:0':logError:error5_0(*(2, n341_0)), rt in Omega(1 + n341_0) Generator Equations: gen_s:0':logError:error5_0(0) <=> 0' gen_s:0':logError:error5_0(+(x, 1)) <=> s(gen_s:0':logError:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: loop, mapIter, droplast, last They will be analysed ascendingly in the following order: droplast < mapIter last < mapIter ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: droplast(gen_nil:cons6_0(+(1, n3031_0))) -> gen_nil:cons6_0(n3031_0), rt in Omega(1 + n3031_0) Induction Base: droplast(gen_nil:cons6_0(+(1, 0))) ->_R^Omega(1) nil Induction Step: droplast(gen_nil:cons6_0(+(1, +(n3031_0, 1)))) ->_R^Omega(1) cons(0', droplast(cons(0', gen_nil:cons6_0(n3031_0)))) ->_IH cons(0', gen_nil:cons6_0(c3032_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: le(gen_s:0':logError:error5_0(+(1, n8_0)), gen_s:0':logError:error5_0(n8_0)) -> false, rt in Omega(1 + n8_0) double(gen_s:0':logError:error5_0(n341_0)) -> gen_s:0':logError:error5_0(*(2, n341_0)), rt in Omega(1 + n341_0) droplast(gen_nil:cons6_0(+(1, n3031_0))) -> gen_nil:cons6_0(n3031_0), rt in Omega(1 + n3031_0) Generator Equations: gen_s:0':logError:error5_0(0) <=> 0' gen_s:0':logError:error5_0(+(x, 1)) <=> s(gen_s:0':logError:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: last, mapIter They will be analysed ascendingly in the following order: last < mapIter ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: last(gen_nil:cons6_0(+(1, n3468_0))) -> gen_s:0':logError:error5_0(0), rt in Omega(1 + n3468_0) Induction Base: last(gen_nil:cons6_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: last(gen_nil:cons6_0(+(1, +(n3468_0, 1)))) ->_R^Omega(1) last(cons(0', gen_nil:cons6_0(n3468_0))) ->_IH gen_s:0':logError:error5_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c Types: le :: s:0':logError:error -> s:0':logError:error -> false:true s :: s:0':logError:error -> s:0':logError:error 0' :: s:0':logError:error false :: false:true true :: false:true double :: s:0':logError:error -> s:0':logError:error log :: s:0':logError:error -> s:0':logError:error logError :: s:0':logError:error loop :: s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error if :: false:true -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error -> s:0':logError:error maplog :: nil:cons -> nil:cons mapIter :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons ifmap :: false:true -> nil:cons -> nil:cons -> nil:cons isempty :: nil:cons -> false:true droplast :: nil:cons -> nil:cons cons :: s:0':logError:error -> nil:cons -> nil:cons last :: nil:cons -> s:0':logError:error error :: s:0':logError:error a :: b:c b :: b:c c :: b:c hole_false:true1_0 :: false:true hole_s:0':logError:error2_0 :: s:0':logError:error hole_nil:cons3_0 :: nil:cons hole_b:c4_0 :: b:c gen_s:0':logError:error5_0 :: Nat -> s:0':logError:error gen_nil:cons6_0 :: Nat -> nil:cons Lemmas: le(gen_s:0':logError:error5_0(+(1, n8_0)), gen_s:0':logError:error5_0(n8_0)) -> false, rt in Omega(1 + n8_0) double(gen_s:0':logError:error5_0(n341_0)) -> gen_s:0':logError:error5_0(*(2, n341_0)), rt in Omega(1 + n341_0) droplast(gen_nil:cons6_0(+(1, n3031_0))) -> gen_nil:cons6_0(n3031_0), rt in Omega(1 + n3031_0) last(gen_nil:cons6_0(+(1, n3468_0))) -> gen_s:0':logError:error5_0(0), rt in Omega(1 + n3468_0) Generator Equations: gen_s:0':logError:error5_0(0) <=> 0' gen_s:0':logError:error5_0(+(x, 1)) <=> s(gen_s:0':logError:error5_0(x)) gen_nil:cons6_0(0) <=> nil gen_nil:cons6_0(+(x, 1)) <=> cons(0', gen_nil:cons6_0(x)) The following defined symbols remain to be analysed: mapIter