/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 6 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 3674 ms] (12) BOUNDS(1, n^3) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) if(true, b, l, t, n) -> l if(false, true, l, t, n) -> t if(false, false, l, t, n) -> lessE(l, t, s(n)) length(nil) -> 0 length(cons(n, l)) -> s(length(l)) toList(leaf) -> nil toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) append(nil, l2) -> l2 append(cons(n, l1), l2) -> cons(n, append(l1, l2)) le(s(n), 0) -> false le(0, m) -> true le(s(n), s(m)) -> le(n, m) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: lessE([], t, n) lessE(l, t, []) lessE(l, [], n) The defined contexts are: if([], x1, x2, x3, x4) le([], x1) if(x0, [], x2, x3, x4) length([]) append([], cons(x1, x2)) append(x0, cons(x1, [])) append([], x1) append(x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) if(true, b, l, t, n) -> l if(false, true, l, t, n) -> t if(false, false, l, t, n) -> lessE(l, t, s(n)) length(nil) -> 0 length(cons(n, l)) -> s(length(l)) toList(leaf) -> nil toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) append(nil, l2) -> l2 append(cons(n, l1), l2) -> cons(n, append(l1, l2)) le(s(n), 0) -> false le(0, m) -> true le(s(n), s(m)) -> le(n, m) a -> c a -> d S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) [1] lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) [1] if(true, b, l, t, n) -> l [1] if(false, true, l, t, n) -> t [1] if(false, false, l, t, n) -> lessE(l, t, s(n)) [1] length(nil) -> 0 [1] length(cons(n, l)) -> s(length(l)) [1] toList(leaf) -> nil [1] toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) [1] append(nil, l2) -> l2 [1] append(cons(n, l1), l2) -> cons(n, append(l1, l2)) [1] le(s(n), 0) -> false [1] le(0, m) -> true [1] le(s(n), s(m)) -> le(n, m) [1] a -> c [1] a -> d [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) [1] lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) [1] if(true, b, l, t, n) -> l [1] if(false, true, l, t, n) -> t [1] if(false, false, l, t, n) -> lessE(l, t, s(n)) [1] length(nil) -> 0 [1] length(cons(n, l)) -> s(length(l)) [1] toList(leaf) -> nil [1] toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) [1] append(nil, l2) -> l2 [1] append(cons(n, l1), l2) -> cons(n, append(l1, l2)) [1] le(s(n), 0) -> false [1] le(0, m) -> true [1] le(s(n), s(m)) -> le(n, m) [1] a -> c [1] a -> d [1] The TRS has the following type information: lessElements :: nil:cons:leaf:node -> nil:cons:leaf:node -> nil:cons:leaf:node lessE :: nil:cons:leaf:node -> nil:cons:leaf:node -> 0:s -> nil:cons:leaf:node 0 :: 0:s if :: true:false -> true:false -> nil:cons:leaf:node -> nil:cons:leaf:node -> 0:s -> nil:cons:leaf:node le :: 0:s -> 0:s -> true:false length :: nil:cons:leaf:node -> 0:s toList :: nil:cons:leaf:node -> nil:cons:leaf:node true :: true:false false :: true:false s :: 0:s -> 0:s nil :: nil:cons:leaf:node cons :: a -> nil:cons:leaf:node -> nil:cons:leaf:node leaf :: nil:cons:leaf:node node :: nil:cons:leaf:node -> a -> nil:cons:leaf:node -> nil:cons:leaf:node append :: nil:cons:leaf:node -> nil:cons:leaf:node -> nil:cons:leaf:node a :: c:d c :: c:d d :: c:d Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: length(v0) -> null_length [0] toList(v0) -> null_toList [0] append(v0, v1) -> null_append [0] le(v0, v1) -> null_le [0] if(v0, v1, v2, v3, v4) -> null_if [0] And the following fresh constants: null_length, null_toList, null_append, null_le, null_if, const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) [1] lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) [1] if(true, b, l, t, n) -> l [1] if(false, true, l, t, n) -> t [1] if(false, false, l, t, n) -> lessE(l, t, s(n)) [1] length(nil) -> 0 [1] length(cons(n, l)) -> s(length(l)) [1] toList(leaf) -> nil [1] toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) [1] append(nil, l2) -> l2 [1] append(cons(n, l1), l2) -> cons(n, append(l1, l2)) [1] le(s(n), 0) -> false [1] le(0, m) -> true [1] le(s(n), s(m)) -> le(n, m) [1] a -> c [1] a -> d [1] length(v0) -> null_length [0] toList(v0) -> null_toList [0] append(v0, v1) -> null_append [0] le(v0, v1) -> null_le [0] if(v0, v1, v2, v3, v4) -> null_if [0] The TRS has the following type information: lessElements :: nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if lessE :: nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if -> 0:s:null_length -> nil:cons:leaf:node:null_toList:null_append:null_if 0 :: 0:s:null_length if :: true:false:null_le -> true:false:null_le -> nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if -> 0:s:null_length -> nil:cons:leaf:node:null_toList:null_append:null_if le :: 0:s:null_length -> 0:s:null_length -> true:false:null_le length :: nil:cons:leaf:node:null_toList:null_append:null_if -> 0:s:null_length toList :: nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if true :: true:false:null_le false :: true:false:null_le s :: 0:s:null_length -> 0:s:null_length nil :: nil:cons:leaf:node:null_toList:null_append:null_if cons :: a -> nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if leaf :: nil:cons:leaf:node:null_toList:null_append:null_if node :: nil:cons:leaf:node:null_toList:null_append:null_if -> a -> nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if append :: nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if -> nil:cons:leaf:node:null_toList:null_append:null_if a :: c:d c :: c:d d :: c:d null_length :: 0:s:null_length null_toList :: nil:cons:leaf:node:null_toList:null_append:null_if null_append :: nil:cons:leaf:node:null_toList:null_append:null_if null_le :: true:false:null_le null_if :: nil:cons:leaf:node:null_toList:null_append:null_if const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 2 false => 1 nil => 1 leaf => 0 c => 0 d => 1 null_length => 0 null_toList => 0 null_append => 0 null_le => 0 null_if => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: a -{ 1 }-> 1 :|: a -{ 1 }-> 0 :|: append(z, z') -{ 1 }-> l2 :|: z = 1, z' = l2, l2 >= 0 append(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 append(z, z') -{ 1 }-> 1 + n + append(l1, l2) :|: n >= 0, z = 1 + n + l1, z' = l2, l1 >= 0, l2 >= 0 if(z, z', z'', z1, z2) -{ 1 }-> l :|: z = 2, b >= 0, n >= 0, z1 = t, z' = b, l >= 0, t >= 0, z2 = n, z'' = l if(z, z', z'', z1, z2) -{ 1 }-> t :|: n >= 0, z' = 2, z = 1, z1 = t, l >= 0, t >= 0, z2 = n, z'' = l if(z, z', z'', z1, z2) -{ 1 }-> lessE(l, t, 1 + n) :|: n >= 0, z = 1, z1 = t, l >= 0, t >= 0, z' = 1, z2 = n, z'' = l if(z, z', z'', z1, z2) -{ 0 }-> 0 :|: z1 = v3, v0 >= 0, v4 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, z2 = v4, v2 >= 0, v3 >= 0 le(z, z') -{ 1 }-> le(n, m) :|: n >= 0, z' = 1 + m, z = 1 + n, m >= 0 le(z, z') -{ 1 }-> 2 :|: z' = m, z = 0, m >= 0 le(z, z') -{ 1 }-> 1 :|: n >= 0, z = 1 + n, z' = 0 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 length(z) -{ 1 }-> 0 :|: z = 1 length(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 length(z) -{ 1 }-> 1 + length(l) :|: z = 1 + n + l, n >= 0, l >= 0 lessE(z, z', z'') -{ 1 }-> if(le(length(l), n), le(length(toList(t)), n), l, t, n) :|: n >= 0, z' = t, z'' = n, z = l, l >= 0, t >= 0 lessElements(z, z') -{ 1 }-> lessE(l, t, 0) :|: z' = t, z = l, l >= 0, t >= 0 toList(z) -{ 1 }-> append(toList(t1), 1 + n + toList(t2)) :|: n >= 0, t1 >= 0, z = 1 + t1 + n + t2, t2 >= 0 toList(z) -{ 1 }-> 1 :|: z = 0 toList(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V4, V13, V11),0,[lessElements(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V4, V13, V11),0,[lessE(V1, V, V4, Out)],[V1 >= 0,V >= 0,V4 >= 0]). eq(start(V1, V, V4, V13, V11),0,[if(V1, V, V4, V13, V11, Out)],[V1 >= 0,V >= 0,V4 >= 0,V13 >= 0,V11 >= 0]). eq(start(V1, V, V4, V13, V11),0,[length(V1, Out)],[V1 >= 0]). eq(start(V1, V, V4, V13, V11),0,[toList(V1, Out)],[V1 >= 0]). eq(start(V1, V, V4, V13, V11),0,[append(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V4, V13, V11),0,[le(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V4, V13, V11),0,[a(Out)],[]). eq(lessElements(V1, V, Out),1,[lessE(V3, V2, 0, Ret)],[Out = Ret,V = V2,V1 = V3,V3 >= 0,V2 >= 0]). eq(lessE(V1, V, V4, Out),1,[length(V7, Ret00),le(Ret00, V6, Ret0),toList(V5, Ret100),length(Ret100, Ret10),le(Ret10, V6, Ret1),if(Ret0, Ret1, V7, V5, V6, Ret2)],[Out = Ret2,V6 >= 0,V = V5,V4 = V6,V1 = V7,V7 >= 0,V5 >= 0]). eq(if(V1, V, V4, V13, V11, Out),1,[],[Out = V12,V1 = 2,V9 >= 0,V10 >= 0,V13 = V8,V = V9,V12 >= 0,V8 >= 0,V11 = V10,V4 = V12]). eq(if(V1, V, V4, V13, V11, Out),1,[],[Out = V16,V15 >= 0,V = 2,V1 = 1,V13 = V16,V14 >= 0,V16 >= 0,V11 = V15,V4 = V14]). eq(if(V1, V, V4, V13, V11, Out),1,[lessE(V17, V18, 1 + V19, Ret3)],[Out = Ret3,V19 >= 0,V1 = 1,V13 = V18,V17 >= 0,V18 >= 0,V = 1,V11 = V19,V4 = V17]). eq(length(V1, Out),1,[],[Out = 0,V1 = 1]). eq(length(V1, Out),1,[length(V20, Ret11)],[Out = 1 + Ret11,V1 = 1 + V20 + V21,V21 >= 0,V20 >= 0]). eq(toList(V1, Out),1,[],[Out = 1,V1 = 0]). eq(toList(V1, Out),1,[toList(V24, Ret01),toList(V23, Ret111),append(Ret01, 1 + V22 + Ret111, Ret4)],[Out = Ret4,V22 >= 0,V24 >= 0,V1 = 1 + V22 + V23 + V24,V23 >= 0]). eq(append(V1, V, Out),1,[],[Out = V25,V1 = 1,V = V25,V25 >= 0]). eq(append(V1, V, Out),1,[append(V26, V27, Ret12)],[Out = 1 + Ret12 + V28,V28 >= 0,V1 = 1 + V26 + V28,V = V27,V26 >= 0,V27 >= 0]). eq(le(V1, V, Out),1,[],[Out = 1,V29 >= 0,V1 = 1 + V29,V = 0]). eq(le(V1, V, Out),1,[],[Out = 2,V = V30,V1 = 0,V30 >= 0]). eq(le(V1, V, Out),1,[le(V31, V32, Ret5)],[Out = Ret5,V31 >= 0,V = 1 + V32,V1 = 1 + V31,V32 >= 0]). eq(a(Out),1,[],[Out = 0]). eq(a(Out),1,[],[Out = 1]). eq(length(V1, Out),0,[],[Out = 0,V33 >= 0,V1 = V33]). eq(toList(V1, Out),0,[],[Out = 0,V34 >= 0,V1 = V34]). eq(append(V1, V, Out),0,[],[Out = 0,V36 >= 0,V35 >= 0,V1 = V36,V = V35]). eq(le(V1, V, Out),0,[],[Out = 0,V37 >= 0,V38 >= 0,V1 = V37,V = V38]). eq(if(V1, V, V4, V13, V11, Out),0,[],[Out = 0,V13 = V42,V39 >= 0,V41 >= 0,V4 = V43,V40 >= 0,V1 = V39,V = V40,V11 = V41,V43 >= 0,V42 >= 0]). input_output_vars(lessElements(V1,V,Out),[V1,V],[Out]). input_output_vars(lessE(V1,V,V4,Out),[V1,V,V4],[Out]). input_output_vars(if(V1,V,V4,V13,V11,Out),[V1,V,V4,V13,V11],[Out]). input_output_vars(length(V1,Out),[V1],[Out]). input_output_vars(toList(V1,Out),[V1],[Out]). input_output_vars(append(V1,V,Out),[V1,V],[Out]). input_output_vars(le(V1,V,Out),[V1,V],[Out]). input_output_vars(a(Out),[],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [a/1] 1. recursive : [append/3] 2. recursive : [le/3] 3. recursive : [length/2] 4. recursive [non_tail,multiple] : [toList/2] 5. recursive : [if/6,lessE/4] 6. non_recursive : [lessElements/3] 7. non_recursive : [start/5] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into a/1 1. SCC is partially evaluated into append/3 2. SCC is partially evaluated into le/3 3. SCC is partially evaluated into length/2 4. SCC is partially evaluated into toList/2 5. SCC is partially evaluated into lessE/4 6. SCC is completely evaluated into other SCCs 7. SCC is partially evaluated into start/5 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations a/1 * CE 30 is refined into CE [31] * CE 29 is refined into CE [32] ### Cost equations --> "Loop" of a/1 * CEs [31] --> Loop 20 * CEs [32] --> Loop 21 ### Ranking functions of CR a(Out) #### Partial ranking functions of CR a(Out) ### Specialization of cost equations append/3 * CE 24 is refined into CE [33] * CE 22 is refined into CE [34] * CE 23 is refined into CE [35] ### Cost equations --> "Loop" of append/3 * CEs [35] --> Loop 22 * CEs [33] --> Loop 23 * CEs [34] --> Loop 24 ### Ranking functions of CR append(V1,V,Out) * RF of phase [22]: [V1] #### Partial ranking functions of CR append(V1,V,Out) * Partial RF of phase [22]: - RF of loop [22:1]: V1 ### Specialization of cost equations le/3 * CE 28 is refined into CE [36] * CE 25 is refined into CE [37] * CE 26 is refined into CE [38] * CE 27 is refined into CE [39] ### Cost equations --> "Loop" of le/3 * CEs [39] --> Loop 25 * CEs [36] --> Loop 26 * CEs [37] --> Loop 27 * CEs [38] --> Loop 28 ### Ranking functions of CR le(V1,V,Out) * RF of phase [25]: [V,V1] #### Partial ranking functions of CR le(V1,V,Out) * Partial RF of phase [25]: - RF of loop [25:1]: V V1 ### Specialization of cost equations length/2 * CE 16 is refined into CE [40] * CE 18 is refined into CE [41] * CE 17 is refined into CE [42] ### Cost equations --> "Loop" of length/2 * CEs [42] --> Loop 29 * CEs [40,41] --> Loop 30 ### Ranking functions of CR length(V1,Out) * RF of phase [29]: [V1] #### Partial ranking functions of CR length(V1,Out) * Partial RF of phase [29]: - RF of loop [29:1]: V1 ### Specialization of cost equations toList/2 * CE 21 is refined into CE [43] * CE 19 is refined into CE [44] * CE 20 is refined into CE [45,46,47,48] ### Cost equations --> "Loop" of toList/2 * CEs [48] --> Loop 31 * CEs [47] --> Loop 32 * CEs [45] --> Loop 33 * CEs [46] --> Loop 34 * CEs [43] --> Loop 35 * CEs [44] --> Loop 36 ### Ranking functions of CR toList(V1,Out) * RF of phase [31,32,33,34]: [V1] #### Partial ranking functions of CR toList(V1,Out) * Partial RF of phase [31,32,33,34]: - RF of loop [31:1,31:2,32:1,32:2,33:1,33:2,34:1,34:2]: V1 ### Specialization of cost equations lessE/4 * CE 14 is refined into CE [49,50,51,52,53,54,55,56] * CE 15 is refined into CE [57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80] * CE 12 is refined into CE [81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151] * CE 13 is refined into CE [152,153,154] ### Cost equations --> "Loop" of lessE/4 * CEs [154] --> Loop 37 * CEs [153] --> Loop 38 * CEs [152] --> Loop 39 * CEs [54,55,56] --> Loop 40 * CEs [50,51] --> Loop 41 * CEs [66] --> Loop 42 * CEs [111,112] --> Loop 43 * CEs [90,103,113,114,115,116,126] --> Loop 44 * CEs [57,58,59,60,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,77,78,79,80] --> Loop 45 * CEs [49,52,53,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151] --> Loop 46 ### Ranking functions of CR lessE(V1,V,V4,Out) * RF of phase [37]: [V-V4+1,V1-V4] #### Partial ranking functions of CR lessE(V1,V,V4,Out) * Partial RF of phase [37]: - RF of loop [37:1]: V-V4+1 V1-V4 ### Specialization of cost equations start/5 * CE 1 is refined into CE [155] * CE 2 is refined into CE [156,157,158] * CE 3 is refined into CE [159] * CE 4 is refined into CE [160] * CE 5 is refined into CE [161,162,163,164,165] * CE 6 is refined into CE [166,167,168,169,170,171] * CE 7 is refined into CE [172,173] * CE 8 is refined into CE [174,175,176] * CE 9 is refined into CE [177,178,179,180] * CE 10 is refined into CE [181,182,183,184,185] * CE 11 is refined into CE [186,187] ### Cost equations --> "Loop" of start/5 * CEs [155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187] --> Loop 47 ### Ranking functions of CR start(V1,V,V4,V13,V11) #### Partial ranking functions of CR start(V1,V,V4,V13,V11) Computing Bounds ===================================== #### Cost of chains of a(Out): * Chain [21]: 1 with precondition: [Out=0] * Chain [20]: 1 with precondition: [Out=1] #### Cost of chains of append(V1,V,Out): * Chain [[22],24]: 1*it(22)+1 Such that:it(22) =< -V+Out with precondition: [V+V1=Out+1,V1>=2,V>=0] * Chain [[22],23]: 1*it(22)+0 Such that:it(22) =< Out with precondition: [V>=0,Out>=1,V1>=Out] * Chain [24]: 1 with precondition: [V1=1,V=Out,V>=0] * Chain [23]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of le(V1,V,Out): * Chain [[25],28]: 1*it(25)+1 Such that:it(25) =< V1 with precondition: [Out=2,V1>=1,V>=V1] * Chain [[25],27]: 1*it(25)+1 Such that:it(25) =< V with precondition: [Out=1,V>=1,V1>=V+1] * Chain [[25],26]: 1*it(25)+0 Such that:it(25) =< V with precondition: [Out=0,V1>=1,V>=1] * Chain [28]: 1 with precondition: [V1=0,Out=2,V>=0] * Chain [27]: 1 with precondition: [V=0,Out=1,V1>=1] * Chain [26]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of length(V1,Out): * Chain [[29],30]: 1*it(29)+1 Such that:it(29) =< V1 with precondition: [Out>=1,V1>=Out] * Chain [30]: 1 with precondition: [Out=0,V1>=0] #### Cost of chains of toList(V1,Out): * Chain [36]: 1 with precondition: [V1=0,Out=1] * Chain [35]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([31,32,33,34],[[36],[35]])]: 1*it(31)+5*it(32)+1*it([36])+1*s(6)+1*s(7)+0 Such that:aux(3) =< V1 aux(4) =< V1+1 aux(5) =< 2*V1+1 it(32) =< aux(3) it([36]) =< aux(4) it(31) =< aux(5) it(32) =< aux(5) it([36]) =< aux(5) aux(2) =< aux(3)-1 s(6) =< it(31)*aux(3) s(7) =< it(32)*aux(2) with precondition: [V1>=1,Out>=0,V1+1>=Out] #### Cost of chains of lessE(V1,V,V4,Out): * Chain [[37],46]: 6*it(37)+49*s(8)+88*s(10)+22*s(13)+125*s(25)+25*s(26)+25*s(27)+25*s(29)+25*s(30)+1*s(422)+2*s(423)+5*s(424)+1*s(425)+1*s(426)+1*s(427)+1*s(428)+1*s(429)+7 Such that:aux(58) =< 1 it(37) =< V-V4+1 aux(62) =< 2*V+1 aux(72) =< V1 aux(73) =< V aux(74) =< V+1 s(13) =< aux(58) s(8) =< aux(72) s(10) =< aux(74) s(25) =< aux(73) s(26) =< aux(74) s(27) =< aux(62) s(25) =< aux(62) s(26) =< aux(62) s(28) =< aux(73)-1 s(29) =< s(27)*aux(73) s(30) =< s(25)*s(28) aux(69) =< aux(73)*2+1 aux(68) =< aux(73)+1 aux(67) =< aux(73) s(433) =< it(37)*aux(72) s(422) =< it(37)*aux(72) s(430) =< it(37)*aux(69) s(431) =< it(37)*aux(68) s(432) =< it(37)*aux(67) s(429) =< s(431) s(423) =< s(433) s(424) =< s(432) s(425) =< s(431) s(426) =< s(430) s(424) =< s(430) s(425) =< s(430) s(427) =< s(426)*aux(73) s(428) =< s(424)*s(28) with precondition: [Out=0,V4>=1,V1>=V4+1,V>=V4] * Chain [[37],45]: 6*it(37)+1*s(422)+2*s(423)+5*s(424)+1*s(425)+1*s(426)+1*s(427)+1*s(428)+1*s(429)+23*s(434)+7*s(435)+50*s(444)+10*s(445)+10*s(446)+10*s(448)+10*s(449)+19*s(493)+7 Such that:aux(93) =< 1 it(37) =< V-V4+1 aux(97) =< 2*V+1 aux(99) =< V aux(100) =< V+1 aux(101) =< Out s(435) =< aux(93) s(493) =< aux(101) s(434) =< aux(100) s(444) =< aux(99) s(445) =< aux(100) s(446) =< aux(97) s(444) =< aux(97) s(445) =< aux(97) s(419) =< aux(99)-1 s(448) =< s(446)*aux(99) s(449) =< s(444)*s(419) aux(69) =< aux(99)*2+1 aux(68) =< aux(99)+1 aux(67) =< aux(99) s(433) =< it(37)*aux(101) s(422) =< it(37)*aux(101) s(430) =< it(37)*aux(69) s(431) =< it(37)*aux(68) s(432) =< it(37)*aux(67) s(429) =< s(431) s(423) =< s(433) s(424) =< s(432) s(425) =< s(431) s(426) =< s(430) s(424) =< s(430) s(425) =< s(430) s(427) =< s(426)*aux(99) s(428) =< s(424)*s(419) with precondition: [V1=Out,V4>=1,V1>=V4+1,V>=V4] * Chain [[37],40]: 6*it(37)+1*s(422)+2*s(423)+5*s(424)+1*s(425)+1*s(426)+1*s(427)+1*s(428)+1*s(429)+7*s(573)+10*s(580)+2*s(581)+2*s(582)+2*s(584)+2*s(585)+1*s(597)+6 Such that:it(37) =< V1-V4 aux(106) =< Out+1 aux(107) =< 2*Out+1 aux(109) =< V1 aux(110) =< Out s(573) =< aux(109) s(580) =< aux(110) s(581) =< aux(106) s(582) =< aux(107) s(580) =< aux(107) s(581) =< aux(107) s(419) =< aux(110)-1 s(584) =< s(582)*aux(110) s(585) =< s(580)*s(419) s(597) =< aux(106) aux(69) =< aux(110)*2+1 aux(68) =< aux(110)+1 aux(67) =< aux(110) s(433) =< it(37)*aux(109) s(422) =< it(37)*aux(109) s(430) =< it(37)*aux(69) s(431) =< it(37)*aux(68) s(432) =< it(37)*aux(67) s(429) =< s(431) s(423) =< s(433) s(424) =< s(432) s(425) =< s(431) s(426) =< s(430) s(424) =< s(430) s(425) =< s(430) s(427) =< s(426)*aux(110) s(428) =< s(424)*s(419) with precondition: [V=Out,V4>=1,V1>=V4+2,V>=V4] * Chain [46]: 49*s(8)+73*s(10)+22*s(13)+125*s(25)+25*s(26)+25*s(27)+25*s(29)+25*s(30)+15*s(50)+7 Such that:aux(58) =< 1 aux(59) =< V1 aux(60) =< V aux(61) =< V+1 aux(62) =< 2*V+1 aux(63) =< V4 s(13) =< aux(58) s(8) =< aux(59) s(10) =< aux(63) s(25) =< aux(60) s(26) =< aux(61) s(27) =< aux(62) s(25) =< aux(62) s(26) =< aux(62) s(28) =< aux(60)-1 s(29) =< s(27)*aux(60) s(30) =< s(25)*s(28) s(50) =< aux(61) with precondition: [Out=0,V1>=0,V>=0,V4>=0] * Chain [45]: 17*s(434)+7*s(435)+50*s(444)+10*s(445)+10*s(446)+10*s(448)+10*s(449)+6*s(469)+19*s(493)+7 Such that:aux(93) =< 1 aux(94) =< V1 aux(95) =< V aux(96) =< V+1 aux(97) =< 2*V+1 aux(98) =< V4 s(435) =< aux(93) s(493) =< aux(94) s(434) =< aux(98) s(444) =< aux(95) s(445) =< aux(96) s(446) =< aux(97) s(444) =< aux(97) s(445) =< aux(97) s(447) =< aux(95)-1 s(448) =< s(446)*aux(95) s(449) =< s(444)*s(447) s(469) =< aux(96) with precondition: [V1=Out,V1>=0,V>=0,V4>=0] * Chain [44]: 35*s(602)+7*s(603)+7*s(604)+7*s(606)+7*s(607)+5*s(608)+5*s(620)+5 Such that:aux(116) =< V1 aux(117) =< V aux(118) =< V+1 aux(119) =< 2*V+1 s(620) =< aux(116) s(602) =< aux(117) s(603) =< aux(118) s(604) =< aux(119) s(602) =< aux(119) s(603) =< aux(119) s(605) =< aux(117)-1 s(606) =< s(604)*aux(117) s(607) =< s(602)*s(605) s(608) =< aux(118) with precondition: [V4=0,Out=0,V1>=0,V>=1] * Chain [43]: 2*s(676)+5 Such that:aux(120) =< V1 s(676) =< aux(120) with precondition: [V4=0,Out=0,V1>=1,V>=0] * Chain [42]: 5*s(682)+1*s(683)+1*s(684)+1*s(686)+1*s(687)+1*s(688)+6 Such that:s(679) =< V s(681) =< 2*V+1 aux(121) =< V+1 s(688) =< aux(121) s(682) =< s(679) s(683) =< aux(121) s(684) =< s(681) s(682) =< s(681) s(683) =< s(681) s(685) =< s(679)-1 s(686) =< s(684)*s(679) s(687) =< s(682)*s(685) with precondition: [V4=0,V1=Out,V1>=0,V>=1] * Chain [41]: 2*s(689)+5*s(694)+1*s(695)+1*s(696)+1*s(698)+1*s(699)+6 Such that:s(691) =< V s(692) =< V+1 s(693) =< 2*V+1 aux(122) =< V1 s(689) =< aux(122) s(694) =< s(691) s(695) =< s(692) s(696) =< s(693) s(694) =< s(693) s(695) =< s(693) s(697) =< s(691)-1 s(698) =< s(696)*s(691) s(699) =< s(694)*s(697) with precondition: [V4=0,V=Out,V1>=1,V>=0] * Chain [40]: 3*s(573)+4*s(574)+10*s(580)+2*s(581)+2*s(582)+2*s(584)+2*s(585)+1*s(597)+6 Such that:aux(104) =< V1 aux(105) =< V aux(106) =< V+1 aux(107) =< 2*V+1 aux(108) =< V4 s(573) =< aux(104) s(574) =< aux(108) s(580) =< aux(105) s(581) =< aux(106) s(582) =< aux(107) s(580) =< aux(107) s(581) =< aux(107) s(583) =< aux(105)-1 s(584) =< s(582)*aux(105) s(585) =< s(580)*s(583) s(597) =< aux(106) with precondition: [V=Out,V>=0,V4>=1,V1>=V4+1] * Chain [39,46]: 50*s(8)+161*s(10)+14 Such that:aux(123) =< 1 aux(124) =< V1 s(10) =< aux(123) s(8) =< aux(124) with precondition: [V=0,V4=0,Out=0,V1>=1] * Chain [39,45]: 51*s(434)+20*s(493)+14 Such that:aux(125) =< 1 aux(126) =< V1 s(434) =< aux(125) s(493) =< aux(126) with precondition: [V=0,V4=0,V1=Out,V1>=1] * Chain [39,40]: 4*s(573)+10*s(574)+13 Such that:aux(127) =< 1 aux(128) =< V1 s(574) =< aux(127) s(573) =< aux(128) with precondition: [V=0,V4=0,Out=0,V1>=2] * Chain [38,[37],46]: 6*it(37)+50*s(8)+89*s(10)+22*s(13)+130*s(25)+26*s(26)+26*s(27)+26*s(29)+26*s(30)+1*s(422)+2*s(423)+5*s(424)+1*s(425)+1*s(426)+1*s(427)+1*s(428)+1*s(429)+13 Such that:aux(58) =< 1 aux(130) =< V1 aux(131) =< V aux(132) =< V+1 aux(133) =< 2*V+1 s(8) =< aux(130) it(37) =< aux(131) s(13) =< aux(58) s(10) =< aux(132) s(25) =< aux(131) s(26) =< aux(132) s(27) =< aux(133) s(25) =< aux(133) s(26) =< aux(133) s(28) =< aux(131)-1 s(29) =< s(27)*aux(131) s(30) =< s(25)*s(28) aux(69) =< aux(131)*2+1 aux(68) =< aux(131)+1 aux(67) =< aux(131) s(433) =< it(37)*aux(130) s(422) =< it(37)*aux(130) s(430) =< it(37)*aux(69) s(431) =< it(37)*aux(68) s(432) =< it(37)*aux(67) s(429) =< s(431) s(423) =< s(433) s(424) =< s(432) s(425) =< s(431) s(426) =< s(430) s(424) =< s(430) s(425) =< s(430) s(427) =< s(426)*aux(131) s(428) =< s(424)*s(28) with precondition: [V4=0,Out=0,V1>=2,V>=1] * Chain [38,[37],45]: 6*it(37)+1*s(422)+2*s(423)+5*s(424)+1*s(425)+1*s(426)+1*s(427)+1*s(428)+1*s(429)+24*s(434)+7*s(435)+55*s(444)+11*s(445)+11*s(446)+11*s(448)+11*s(449)+20*s(493)+13 Such that:aux(93) =< 1 aux(134) =< V aux(135) =< V+1 aux(136) =< 2*V+1 aux(137) =< Out it(37) =< aux(134) s(493) =< aux(137) s(435) =< aux(93) s(434) =< aux(135) s(444) =< aux(134) s(445) =< aux(135) s(446) =< aux(136) s(444) =< aux(136) s(445) =< aux(136) s(419) =< aux(134)-1 s(448) =< s(446)*aux(134) s(449) =< s(444)*s(419) aux(69) =< aux(134)*2+1 aux(68) =< aux(134)+1 aux(67) =< aux(134) s(433) =< it(37)*aux(137) s(422) =< it(37)*aux(137) s(430) =< it(37)*aux(69) s(431) =< it(37)*aux(68) s(432) =< it(37)*aux(67) s(429) =< s(431) s(423) =< s(433) s(424) =< s(432) s(425) =< s(431) s(426) =< s(430) s(424) =< s(430) s(425) =< s(430) s(427) =< s(426)*aux(134) s(428) =< s(424)*s(419) with precondition: [V4=0,V1=Out,V1>=2,V>=1] * Chain [38,[37],40]: 14*it(37)+1*s(422)+2*s(423)+5*s(424)+1*s(425)+1*s(426)+1*s(427)+1*s(428)+1*s(429)+15*s(580)+3*s(581)+3*s(582)+3*s(584)+3*s(585)+2*s(597)+12 Such that:aux(138) =< V1 aux(139) =< Out aux(140) =< Out+1 aux(141) =< 2*Out+1 it(37) =< aux(138) s(580) =< aux(139) s(581) =< aux(140) s(582) =< aux(141) s(580) =< aux(141) s(581) =< aux(141) s(419) =< aux(139)-1 s(584) =< s(582)*aux(139) s(585) =< s(580)*s(419) s(597) =< aux(140) aux(69) =< aux(139)*2+1 aux(68) =< aux(139)+1 aux(67) =< aux(139) s(433) =< it(37)*aux(138) s(422) =< it(37)*aux(138) s(430) =< it(37)*aux(69) s(431) =< it(37)*aux(68) s(432) =< it(37)*aux(67) s(429) =< s(431) s(423) =< s(433) s(424) =< s(432) s(425) =< s(431) s(426) =< s(430) s(424) =< s(430) s(425) =< s(430) s(427) =< s(426)*aux(139) s(428) =< s(424)*s(419) with precondition: [V4=0,V=Out,V1>=3,V>=1] * Chain [38,46]: 50*s(8)+95*s(10)+130*s(25)+26*s(26)+26*s(27)+26*s(29)+26*s(30)+16*s(50)+13 Such that:aux(142) =< 1 aux(143) =< V1 aux(144) =< V aux(145) =< V+1 aux(146) =< 2*V+1 s(8) =< aux(143) s(10) =< aux(142) s(25) =< aux(144) s(26) =< aux(145) s(27) =< aux(146) s(25) =< aux(146) s(26) =< aux(146) s(28) =< aux(144)-1 s(29) =< s(27)*aux(144) s(30) =< s(25)*s(28) s(50) =< aux(145) with precondition: [V4=0,Out=0,V1>=1,V>=1] * Chain [38,45]: 24*s(434)+55*s(444)+11*s(445)+11*s(446)+11*s(448)+11*s(449)+7*s(469)+20*s(493)+13 Such that:aux(147) =< 1 aux(148) =< V aux(149) =< V+1 aux(150) =< 2*V+1 aux(151) =< Out s(493) =< aux(151) s(434) =< aux(147) s(444) =< aux(148) s(445) =< aux(149) s(446) =< aux(150) s(444) =< aux(150) s(445) =< aux(150) s(447) =< aux(148)-1 s(448) =< s(446)*aux(148) s(449) =< s(444)*s(447) s(469) =< aux(149) with precondition: [V4=0,V1=Out,V1>=1,V>=1] * Chain [38,40]: 4*s(573)+4*s(574)+15*s(580)+3*s(581)+3*s(582)+3*s(584)+3*s(585)+2*s(597)+12 Such that:aux(108) =< 1 aux(152) =< V1 aux(153) =< Out aux(154) =< Out+1 aux(155) =< 2*Out+1 s(573) =< aux(152) s(574) =< aux(108) s(580) =< aux(153) s(581) =< aux(154) s(582) =< aux(155) s(580) =< aux(155) s(581) =< aux(155) s(583) =< aux(153)-1 s(584) =< s(582)*aux(153) s(585) =< s(580)*s(583) s(597) =< aux(154) with precondition: [V4=0,V=Out,V1>=2,V>=1] #### Cost of chains of start(V1,V,V4,V13,V11): * Chain [47]: 12*s(1011)+416*s(1018)+1261*s(1019)+630*s(1020)+126*s(1021)+126*s(1022)+126*s(1024)+126*s(1025)+239*s(1026)+6*s(1027)+1*s(1032)+1*s(1036)+2*s(1037)+5*s(1038)+1*s(1039)+1*s(1040)+1*s(1041)+1*s(1042)+94*s(1043)+2*s(1045)+2*s(1049)+4*s(1050)+10*s(1051)+2*s(1052)+2*s(1053)+2*s(1054)+2*s(1055)+6*s(1090)+1*s(1119)+1*s(1123)+2*s(1124)+5*s(1125)+1*s(1126)+1*s(1127)+1*s(1128)+1*s(1129)+570*s(1130)+768*s(1137)+1610*s(1139)+322*s(1140)+322*s(1141)+322*s(1143)+322*s(1144)+26*s(1146)+4*s(1151)+4*s(1155)+8*s(1156)+20*s(1157)+4*s(1158)+4*s(1159)+4*s(1160)+4*s(1161)+2*s(1164)+2*s(1168)+4*s(1169)+10*s(1170)+2*s(1171)+2*s(1172)+2*s(1173)+2*s(1174)+2*s(1272)+2*s(1276)+4*s(1277)+10*s(1278)+2*s(1279)+2*s(1280)+2*s(1281)+2*s(1282)+12*s(1289)+2*s(1323)+2*s(1327)+4*s(1328)+10*s(1329)+2*s(1330)+2*s(1331)+2*s(1332)+2*s(1333)+6*s(1448)+1*s(1477)+1*s(1481)+2*s(1482)+5*s(1483)+1*s(1484)+1*s(1485)+1*s(1486)+1*s(1487)+5*s(1492)+1*s(1493)+1*s(1494)+1*s(1496)+1*s(1497)+15 Such that:s(1490) =< V1+1 s(1448) =< V1-V4 s(1491) =< 2*V1+1 s(1090) =< V4-V11 aux(193) =< 1 aux(194) =< V1 aux(195) =< V aux(196) =< V+1 aux(197) =< V-V4+1 aux(198) =< 2*V+1 aux(199) =< V4 aux(200) =< V13 aux(201) =< V13+1 aux(202) =< V13-V11 aux(203) =< 2*V13+1 aux(204) =< V11+1 s(1137) =< aux(194) s(1146) =< aux(195) s(1289) =< aux(197) s(1011) =< aux(202) s(1018) =< aux(199) s(1019) =< aux(193) s(1020) =< aux(200) s(1021) =< aux(201) s(1022) =< aux(203) s(1020) =< aux(203) s(1021) =< aux(203) s(1023) =< aux(200)-1 s(1024) =< s(1022)*aux(200) s(1025) =< s(1020)*s(1023) s(1026) =< aux(201) s(1027) =< aux(200) s(1028) =< aux(200)*2+1 s(1029) =< aux(200)+1 s(1030) =< aux(200) s(1031) =< s(1027)*aux(199) s(1032) =< s(1027)*aux(199) s(1033) =< s(1027)*s(1028) s(1034) =< s(1027)*s(1029) s(1035) =< s(1027)*s(1030) s(1036) =< s(1034) s(1037) =< s(1031) s(1038) =< s(1035) s(1039) =< s(1034) s(1040) =< s(1033) s(1038) =< s(1033) s(1039) =< s(1033) s(1041) =< s(1040)*aux(200) s(1042) =< s(1038)*s(1023) s(1043) =< aux(204) s(1044) =< s(1011)*aux(199) s(1045) =< s(1011)*aux(199) s(1046) =< s(1011)*s(1028) s(1047) =< s(1011)*s(1029) s(1048) =< s(1011)*s(1030) s(1049) =< s(1047) s(1050) =< s(1044) s(1051) =< s(1048) s(1052) =< s(1047) s(1053) =< s(1046) s(1051) =< s(1046) s(1052) =< s(1046) s(1054) =< s(1053)*aux(200) s(1055) =< s(1051)*s(1023) s(1130) =< aux(196) s(1139) =< aux(195) s(1140) =< aux(196) s(1141) =< aux(198) s(1139) =< aux(198) s(1140) =< aux(198) s(1142) =< aux(195)-1 s(1143) =< s(1141)*aux(195) s(1144) =< s(1139)*s(1142) s(1147) =< aux(195)*2+1 s(1148) =< aux(195)+1 s(1149) =< aux(195) s(1150) =< s(1146)*aux(194) s(1151) =< s(1146)*aux(194) s(1152) =< s(1146)*s(1147) s(1153) =< s(1146)*s(1148) s(1154) =< s(1146)*s(1149) s(1155) =< s(1153) s(1156) =< s(1150) s(1157) =< s(1154) s(1158) =< s(1153) s(1159) =< s(1152) s(1157) =< s(1152) s(1158) =< s(1152) s(1160) =< s(1159)*aux(195) s(1161) =< s(1157)*s(1142) s(1163) =< s(1130)*aux(194) s(1164) =< s(1130)*aux(194) s(1165) =< s(1130)*s(1147) s(1166) =< s(1130)*s(1148) s(1167) =< s(1130)*s(1149) s(1168) =< s(1166) s(1169) =< s(1163) s(1170) =< s(1167) s(1171) =< s(1166) s(1172) =< s(1165) s(1170) =< s(1165) s(1171) =< s(1165) s(1173) =< s(1172)*aux(195) s(1174) =< s(1170)*s(1142) s(1271) =< s(1137)*aux(194) s(1272) =< s(1137)*aux(194) s(1273) =< s(1137)*s(1147) s(1274) =< s(1137)*s(1148) s(1275) =< s(1137)*s(1149) s(1276) =< s(1274) s(1277) =< s(1271) s(1278) =< s(1275) s(1279) =< s(1274) s(1280) =< s(1273) s(1278) =< s(1273) s(1279) =< s(1273) s(1281) =< s(1280)*aux(195) s(1282) =< s(1278)*s(1142) s(1322) =< s(1289)*aux(194) s(1323) =< s(1289)*aux(194) s(1324) =< s(1289)*s(1147) s(1325) =< s(1289)*s(1148) s(1326) =< s(1289)*s(1149) s(1327) =< s(1325) s(1328) =< s(1322) s(1329) =< s(1326) s(1330) =< s(1325) s(1331) =< s(1324) s(1329) =< s(1324) s(1330) =< s(1324) s(1332) =< s(1331)*aux(195) s(1333) =< s(1329)*s(1142) s(1476) =< s(1448)*aux(194) s(1477) =< s(1448)*aux(194) s(1478) =< s(1448)*s(1147) s(1479) =< s(1448)*s(1148) s(1480) =< s(1448)*s(1149) s(1481) =< s(1479) s(1482) =< s(1476) s(1483) =< s(1480) s(1484) =< s(1479) s(1485) =< s(1478) s(1483) =< s(1478) s(1484) =< s(1478) s(1486) =< s(1485)*aux(195) s(1487) =< s(1483)*s(1142) s(1492) =< aux(194) s(1493) =< s(1490) s(1494) =< s(1491) s(1492) =< s(1491) s(1493) =< s(1491) s(1495) =< aux(194)-1 s(1496) =< s(1494)*aux(194) s(1497) =< s(1492)*s(1495) s(1118) =< s(1090)*aux(199) s(1119) =< s(1090)*aux(199) s(1120) =< s(1090)*s(1028) s(1121) =< s(1090)*s(1029) s(1122) =< s(1090)*s(1030) s(1123) =< s(1121) s(1124) =< s(1118) s(1125) =< s(1122) s(1126) =< s(1121) s(1127) =< s(1120) s(1125) =< s(1120) s(1126) =< s(1120) s(1128) =< s(1127)*aux(200) s(1129) =< s(1125)*s(1023) with precondition: [] Closed-form bounds of start(V1,V,V4,V13,V11): ------------------------------------- * Chain [47] with precondition: [] - Upper bound: nat(V1)*779+1276+nat(V1)*6*nat(V1)+nat(V1)*32*nat(V)+nat(V1)*4*nat(V)*nat(V)+nat(V1)*2*nat(V)*nat(nat(V)+ -1)+nat(nat(V1)+ -1)*nat(V1)+nat(V1)*6*nat(V+1)+nat(2*V1+1)*nat(V1)+nat(V1)*6*nat(V-V4+1)+nat(V1)*3*nat(V1-V4)+nat(V)*1648+nat(V)*40*nat(V)+nat(V)*8*nat(V)*nat(V)+nat(V)*4*nat(V)*nat(nat(V)+ -1)+nat(V)*4*nat(V)*nat(V+1)+nat(V)*4*nat(V)*nat(V-V4+1)+nat(V)*2*nat(V)*nat(V1-V4)+nat(V)*322*nat(nat(V)+ -1)+nat(V)*2*nat(nat(V)+ -1)*nat(V+1)+nat(V)*2*nat(nat(V)+ -1)*nat(V-V4+1)+nat(nat(V)+ -1)*nat(V)*nat(V1-V4)+nat(V)*20*nat(V+1)+nat(V)*322*nat(2*V+1)+nat(V)*20*nat(V-V4+1)+nat(V)*10*nat(V1-V4)+nat(V4)*416+nat(V4)*3*nat(V13)+nat(V4)*3*nat(V4-V11)+nat(V4)*6*nat(V13-V11)+nat(V13)*639+nat(V13)*10*nat(V13)+nat(V13)*2*nat(V13)*nat(V13)+nat(V13)*nat(V13)*nat(nat(V13)+ -1)+nat(V13)*2*nat(V13)*nat(V4-V11)+nat(V13)*4*nat(V13)*nat(V13-V11)+nat(V13)*126*nat(nat(V13)+ -1)+nat(nat(V13)+ -1)*nat(V13)*nat(V4-V11)+nat(V13)*2*nat(nat(V13)+ -1)*nat(V13-V11)+nat(V13)*126*nat(2*V13+1)+nat(V13)*10*nat(V4-V11)+nat(V13)*20*nat(V13-V11)+nat(V1+1)+nat(V+1)*898+nat(V13+1)*365+nat(V11+1)*94+nat(2*V1+1)+nat(2*V+1)*322+nat(2*V13+1)*126+nat(V-V4+1)*18+nat(V1-V4)*9+nat(V4-V11)*9+nat(V13-V11)*18 - Complexity: n^3 ### Maximum cost of start(V1,V,V4,V13,V11): nat(V1)*779+1276+nat(V1)*6*nat(V1)+nat(V1)*32*nat(V)+nat(V1)*4*nat(V)*nat(V)+nat(V1)*2*nat(V)*nat(nat(V)+ -1)+nat(nat(V1)+ -1)*nat(V1)+nat(V1)*6*nat(V+1)+nat(2*V1+1)*nat(V1)+nat(V1)*6*nat(V-V4+1)+nat(V1)*3*nat(V1-V4)+nat(V)*1648+nat(V)*40*nat(V)+nat(V)*8*nat(V)*nat(V)+nat(V)*4*nat(V)*nat(nat(V)+ -1)+nat(V)*4*nat(V)*nat(V+1)+nat(V)*4*nat(V)*nat(V-V4+1)+nat(V)*2*nat(V)*nat(V1-V4)+nat(V)*322*nat(nat(V)+ -1)+nat(V)*2*nat(nat(V)+ -1)*nat(V+1)+nat(V)*2*nat(nat(V)+ -1)*nat(V-V4+1)+nat(nat(V)+ -1)*nat(V)*nat(V1-V4)+nat(V)*20*nat(V+1)+nat(V)*322*nat(2*V+1)+nat(V)*20*nat(V-V4+1)+nat(V)*10*nat(V1-V4)+nat(V4)*416+nat(V4)*3*nat(V13)+nat(V4)*3*nat(V4-V11)+nat(V4)*6*nat(V13-V11)+nat(V13)*639+nat(V13)*10*nat(V13)+nat(V13)*2*nat(V13)*nat(V13)+nat(V13)*nat(V13)*nat(nat(V13)+ -1)+nat(V13)*2*nat(V13)*nat(V4-V11)+nat(V13)*4*nat(V13)*nat(V13-V11)+nat(V13)*126*nat(nat(V13)+ -1)+nat(nat(V13)+ -1)*nat(V13)*nat(V4-V11)+nat(V13)*2*nat(nat(V13)+ -1)*nat(V13-V11)+nat(V13)*126*nat(2*V13+1)+nat(V13)*10*nat(V4-V11)+nat(V13)*20*nat(V13-V11)+nat(V1+1)+nat(V+1)*898+nat(V13+1)*365+nat(V11+1)*94+nat(2*V1+1)+nat(2*V+1)*322+nat(2*V13+1)*126+nat(V-V4+1)*18+nat(V1-V4)*9+nat(V4-V11)*9+nat(V13-V11)*18 Asymptotic class: n^3 * Total analysis performed in 3210 ms. ---------------------------------------- (12) BOUNDS(1, n^3) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) if(true, b, l, t, n) -> l if(false, true, l, t, n) -> t if(false, false, l, t, n) -> lessE(l, t, s(n)) length(nil) -> 0 length(cons(n, l)) -> s(length(l)) toList(leaf) -> nil toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) append(nil, l2) -> l2 append(cons(n, l1), l2) -> cons(n, append(l1, l2)) le(s(n), 0) -> false le(0, m) -> true le(s(n), s(m)) -> le(n, m) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence toList(node(t1, n, t2)) ->^+ append(toList(t1), cons(n, toList(t2))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [t1 / node(t1, n, t2)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) if(true, b, l, t, n) -> l if(false, true, l, t, n) -> t if(false, false, l, t, n) -> lessE(l, t, s(n)) length(nil) -> 0 length(cons(n, l)) -> s(length(l)) toList(leaf) -> nil toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) append(nil, l2) -> l2 append(cons(n, l1), l2) -> cons(n, append(l1, l2)) le(s(n), 0) -> false le(0, m) -> true le(s(n), s(m)) -> le(n, m) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: lessElements(l, t) -> lessE(l, t, 0) lessE(l, t, n) -> if(le(length(l), n), le(length(toList(t)), n), l, t, n) if(true, b, l, t, n) -> l if(false, true, l, t, n) -> t if(false, false, l, t, n) -> lessE(l, t, s(n)) length(nil) -> 0 length(cons(n, l)) -> s(length(l)) toList(leaf) -> nil toList(node(t1, n, t2)) -> append(toList(t1), cons(n, toList(t2))) append(nil, l2) -> l2 append(cons(n, l1), l2) -> cons(n, append(l1, l2)) le(s(n), 0) -> false le(0, m) -> true le(s(n), s(m)) -> le(n, m) a -> c a -> d S is empty. Rewrite Strategy: FULL