/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 40 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 29 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, y) -> div2(x, y, 0) div2(x, y, i) -> if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0) -> 0 inc(s(i)) -> s(inc(i)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d Types: div :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s div2 :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s 0' :: 0':divZeroError:s if1 :: true:false -> true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s le :: 0':divZeroError:s -> 0':divZeroError:s -> true:false plus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s inc :: 0':divZeroError:s -> 0':divZeroError:s true :: true:false divZeroError :: 0':divZeroError:s false :: true:false if2 :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s minus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s s :: 0':divZeroError:s -> 0':divZeroError:s plusIter :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s ifPlus :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s a :: c:d c :: c:d d :: c:d hole_0':divZeroError:s1_0 :: 0':divZeroError:s hole_true:false2_0 :: true:false hole_c:d3_0 :: c:d gen_0':divZeroError:s4_0 :: Nat -> 0':divZeroError:s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: div2, le, inc, minus, plusIter They will be analysed ascendingly in the following order: le < div2 inc < div2 minus < div2 le < plusIter ---------------------------------------- (6) Obligation: TRS: Rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d Types: div :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s div2 :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s 0' :: 0':divZeroError:s if1 :: true:false -> true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s le :: 0':divZeroError:s -> 0':divZeroError:s -> true:false plus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s inc :: 0':divZeroError:s -> 0':divZeroError:s true :: true:false divZeroError :: 0':divZeroError:s false :: true:false if2 :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s minus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s s :: 0':divZeroError:s -> 0':divZeroError:s plusIter :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s ifPlus :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s a :: c:d c :: c:d d :: c:d hole_0':divZeroError:s1_0 :: 0':divZeroError:s hole_true:false2_0 :: true:false hole_c:d3_0 :: c:d gen_0':divZeroError:s4_0 :: Nat -> 0':divZeroError:s Generator Equations: gen_0':divZeroError:s4_0(0) <=> 0' gen_0':divZeroError:s4_0(+(x, 1)) <=> s(gen_0':divZeroError:s4_0(x)) The following defined symbols remain to be analysed: le, div2, inc, minus, plusIter They will be analysed ascendingly in the following order: le < div2 inc < div2 minus < div2 le < plusIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':divZeroError:s4_0(+(1, n6_0)), gen_0':divZeroError:s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: le(gen_0':divZeroError:s4_0(+(1, 0)), gen_0':divZeroError:s4_0(0)) ->_R^Omega(1) false Induction Step: le(gen_0':divZeroError:s4_0(+(1, +(n6_0, 1))), gen_0':divZeroError:s4_0(+(n6_0, 1))) ->_R^Omega(1) le(gen_0':divZeroError:s4_0(+(1, n6_0)), gen_0':divZeroError:s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d Types: div :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s div2 :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s 0' :: 0':divZeroError:s if1 :: true:false -> true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s le :: 0':divZeroError:s -> 0':divZeroError:s -> true:false plus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s inc :: 0':divZeroError:s -> 0':divZeroError:s true :: true:false divZeroError :: 0':divZeroError:s false :: true:false if2 :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s minus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s s :: 0':divZeroError:s -> 0':divZeroError:s plusIter :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s ifPlus :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s a :: c:d c :: c:d d :: c:d hole_0':divZeroError:s1_0 :: 0':divZeroError:s hole_true:false2_0 :: true:false hole_c:d3_0 :: c:d gen_0':divZeroError:s4_0 :: Nat -> 0':divZeroError:s Generator Equations: gen_0':divZeroError:s4_0(0) <=> 0' gen_0':divZeroError:s4_0(+(x, 1)) <=> s(gen_0':divZeroError:s4_0(x)) The following defined symbols remain to be analysed: le, div2, inc, minus, plusIter They will be analysed ascendingly in the following order: le < div2 inc < div2 minus < div2 le < plusIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d Types: div :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s div2 :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s 0' :: 0':divZeroError:s if1 :: true:false -> true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s le :: 0':divZeroError:s -> 0':divZeroError:s -> true:false plus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s inc :: 0':divZeroError:s -> 0':divZeroError:s true :: true:false divZeroError :: 0':divZeroError:s false :: true:false if2 :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s minus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s s :: 0':divZeroError:s -> 0':divZeroError:s plusIter :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s ifPlus :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s a :: c:d c :: c:d d :: c:d hole_0':divZeroError:s1_0 :: 0':divZeroError:s hole_true:false2_0 :: true:false hole_c:d3_0 :: c:d gen_0':divZeroError:s4_0 :: Nat -> 0':divZeroError:s Lemmas: le(gen_0':divZeroError:s4_0(+(1, n6_0)), gen_0':divZeroError:s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':divZeroError:s4_0(0) <=> 0' gen_0':divZeroError:s4_0(+(x, 1)) <=> s(gen_0':divZeroError:s4_0(x)) The following defined symbols remain to be analysed: inc, div2, minus, plusIter They will be analysed ascendingly in the following order: inc < div2 minus < div2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':divZeroError:s4_0(n313_0)) -> gen_0':divZeroError:s4_0(n313_0), rt in Omega(1 + n313_0) Induction Base: inc(gen_0':divZeroError:s4_0(0)) ->_R^Omega(1) 0' Induction Step: inc(gen_0':divZeroError:s4_0(+(n313_0, 1))) ->_R^Omega(1) s(inc(gen_0':divZeroError:s4_0(n313_0))) ->_IH s(gen_0':divZeroError:s4_0(c314_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d Types: div :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s div2 :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s 0' :: 0':divZeroError:s if1 :: true:false -> true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s le :: 0':divZeroError:s -> 0':divZeroError:s -> true:false plus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s inc :: 0':divZeroError:s -> 0':divZeroError:s true :: true:false divZeroError :: 0':divZeroError:s false :: true:false if2 :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s minus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s s :: 0':divZeroError:s -> 0':divZeroError:s plusIter :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s ifPlus :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s a :: c:d c :: c:d d :: c:d hole_0':divZeroError:s1_0 :: 0':divZeroError:s hole_true:false2_0 :: true:false hole_c:d3_0 :: c:d gen_0':divZeroError:s4_0 :: Nat -> 0':divZeroError:s Lemmas: le(gen_0':divZeroError:s4_0(+(1, n6_0)), gen_0':divZeroError:s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) inc(gen_0':divZeroError:s4_0(n313_0)) -> gen_0':divZeroError:s4_0(n313_0), rt in Omega(1 + n313_0) Generator Equations: gen_0':divZeroError:s4_0(0) <=> 0' gen_0':divZeroError:s4_0(+(x, 1)) <=> s(gen_0':divZeroError:s4_0(x)) The following defined symbols remain to be analysed: minus, div2, plusIter They will be analysed ascendingly in the following order: minus < div2 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':divZeroError:s4_0(n543_0), gen_0':divZeroError:s4_0(n543_0)) -> gen_0':divZeroError:s4_0(0), rt in Omega(1 + n543_0) Induction Base: minus(gen_0':divZeroError:s4_0(0), gen_0':divZeroError:s4_0(0)) ->_R^Omega(1) gen_0':divZeroError:s4_0(0) Induction Step: minus(gen_0':divZeroError:s4_0(+(n543_0, 1)), gen_0':divZeroError:s4_0(+(n543_0, 1))) ->_R^Omega(1) minus(gen_0':divZeroError:s4_0(n543_0), gen_0':divZeroError:s4_0(n543_0)) ->_IH gen_0':divZeroError:s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: div(x, y) -> div2(x, y, 0') div2(x, y, i) -> if1(le(y, 0'), le(y, x), x, y, plus(i, 0'), inc(i)) if1(true, b, x, y, i, j) -> divZeroError if1(false, b, x, y, i, j) -> if2(b, x, y, i, j) if2(true, x, y, i, j) -> div2(minus(x, y), y, j) if2(false, x, y, i, j) -> i inc(0') -> 0' inc(s(i)) -> s(inc(i)) le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) plus(x, y) -> plusIter(x, y, 0') plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) a -> c a -> d Types: div :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s div2 :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s 0' :: 0':divZeroError:s if1 :: true:false -> true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s le :: 0':divZeroError:s -> 0':divZeroError:s -> true:false plus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s inc :: 0':divZeroError:s -> 0':divZeroError:s true :: true:false divZeroError :: 0':divZeroError:s false :: true:false if2 :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s minus :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s s :: 0':divZeroError:s -> 0':divZeroError:s plusIter :: 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s ifPlus :: true:false -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s -> 0':divZeroError:s a :: c:d c :: c:d d :: c:d hole_0':divZeroError:s1_0 :: 0':divZeroError:s hole_true:false2_0 :: true:false hole_c:d3_0 :: c:d gen_0':divZeroError:s4_0 :: Nat -> 0':divZeroError:s Lemmas: le(gen_0':divZeroError:s4_0(+(1, n6_0)), gen_0':divZeroError:s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) inc(gen_0':divZeroError:s4_0(n313_0)) -> gen_0':divZeroError:s4_0(n313_0), rt in Omega(1 + n313_0) minus(gen_0':divZeroError:s4_0(n543_0), gen_0':divZeroError:s4_0(n543_0)) -> gen_0':divZeroError:s4_0(0), rt in Omega(1 + n543_0) Generator Equations: gen_0':divZeroError:s4_0(0) <=> 0' gen_0':divZeroError:s4_0(+(x, 1)) <=> s(gen_0':divZeroError:s4_0(x)) The following defined symbols remain to be analysed: div2, plusIter