/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 282 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) minus(x, s(y)) -> p(minus(x, y)) div(0, s(y)) -> 0 div(s(x), s(y)) -> s(div(minus(s(x), s(y)), s(y))) log(s(0), s(s(y))) -> 0 log(s(s(x)), s(s(y))) -> s(log(div(minus(x, y), s(s(y))), s(s(y)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0') -> 0' p(s(x)) -> x minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) minus(x, s(y)) -> p(minus(x, y)) div(0', s(y)) -> 0' div(s(x), s(y)) -> s(div(minus(s(x), s(y)), s(y))) log(s(0'), s(s(y))) -> 0' log(s(s(x)), s(s(y))) -> s(log(div(minus(x, y), s(s(y))), s(s(y)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: p(0') -> 0' p(s(x)) -> x minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) minus(x, s(y)) -> p(minus(x, y)) div(0', s(y)) -> 0' div(s(x), s(y)) -> s(div(minus(s(x), s(y)), s(y))) log(s(0'), s(s(y))) -> 0' log(s(s(x)), s(s(y))) -> s(log(div(minus(x, y), s(s(y))), s(s(y)))) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, div, log They will be analysed ascendingly in the following order: minus < div minus < log div < log ---------------------------------------- (6) Obligation: TRS: Rules: p(0') -> 0' p(s(x)) -> x minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) minus(x, s(y)) -> p(minus(x, y)) div(0', s(y)) -> 0' div(s(x), s(y)) -> s(div(minus(s(x), s(y)), s(y))) log(s(0'), s(s(y))) -> 0' log(s(s(x)), s(s(y))) -> s(log(div(minus(x, y), s(s(y))), s(s(y)))) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, div, log They will be analysed ascendingly in the following order: minus < div minus < log div < log ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Induction Base: minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(0) Induction Step: minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: p(0') -> 0' p(s(x)) -> x minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) minus(x, s(y)) -> p(minus(x, y)) div(0', s(y)) -> 0' div(s(x), s(y)) -> s(div(minus(s(x), s(y)), s(y))) log(s(0'), s(s(y))) -> 0' log(s(s(x)), s(s(y))) -> s(log(div(minus(x, y), s(s(y))), s(s(y)))) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, div, log They will be analysed ascendingly in the following order: minus < div minus < log div < log ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: p(0') -> 0' p(s(x)) -> x minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) minus(x, s(y)) -> p(minus(x, y)) div(0', s(y)) -> 0' div(s(x), s(y)) -> s(div(minus(s(x), s(y)), s(y))) log(s(0'), s(s(y))) -> 0' log(s(s(x)), s(s(y))) -> s(log(div(minus(x, y), s(s(y))), s(s(y)))) Types: p :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: div, log They will be analysed ascendingly in the following order: div < log