/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 279 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(x)) -> f(id_inc(c(x, x))) f(c(s(x), y)) -> g(c(x, y)) g(c(s(x), y)) -> g(c(y, x)) g(c(x, s(y))) -> g(c(y, x)) g(c(x, x)) -> f(x) id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) id_inc(s(x)) -> s(id_inc(x)) id_inc(0) -> 0 id_inc(0) -> s(0) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(x)) -> f(id_inc(c(x, x))) f(c(s(x), y)) -> g(c(x, y)) g(c(s(x), y)) -> g(c(y, x)) g(c(x, s(y))) -> g(c(y, x)) g(c(x, x)) -> f(x) id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) id_inc(s(x)) -> s(id_inc(x)) id_inc(0') -> 0' id_inc(0') -> s(0') S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(s(x)) -> f(id_inc(c(x, x))) f(c(s(x), y)) -> g(c(x, y)) g(c(s(x), y)) -> g(c(y, x)) g(c(x, s(y))) -> g(c(y, x)) g(c(x, x)) -> f(x) id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) id_inc(s(x)) -> s(id_inc(x)) id_inc(0') -> 0' id_inc(0') -> s(0') Types: f :: s:c:0' -> f:g s :: s:c:0' -> s:c:0' id_inc :: s:c:0' -> s:c:0' c :: s:c:0' -> s:c:0' -> s:c:0' g :: s:c:0' -> f:g 0' :: s:c:0' hole_f:g1_0 :: f:g hole_s:c:0'2_0 :: s:c:0' gen_s:c:0'3_0 :: Nat -> s:c:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, id_inc, g They will be analysed ascendingly in the following order: id_inc < f f = g ---------------------------------------- (6) Obligation: TRS: Rules: f(s(x)) -> f(id_inc(c(x, x))) f(c(s(x), y)) -> g(c(x, y)) g(c(s(x), y)) -> g(c(y, x)) g(c(x, s(y))) -> g(c(y, x)) g(c(x, x)) -> f(x) id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) id_inc(s(x)) -> s(id_inc(x)) id_inc(0') -> 0' id_inc(0') -> s(0') Types: f :: s:c:0' -> f:g s :: s:c:0' -> s:c:0' id_inc :: s:c:0' -> s:c:0' c :: s:c:0' -> s:c:0' -> s:c:0' g :: s:c:0' -> f:g 0' :: s:c:0' hole_f:g1_0 :: f:g hole_s:c:0'2_0 :: s:c:0' gen_s:c:0'3_0 :: Nat -> s:c:0' Generator Equations: gen_s:c:0'3_0(0) <=> 0' gen_s:c:0'3_0(+(x, 1)) <=> s(gen_s:c:0'3_0(x)) The following defined symbols remain to be analysed: id_inc, f, g They will be analysed ascendingly in the following order: id_inc < f f = g ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: id_inc(gen_s:c:0'3_0(n5_0)) -> gen_s:c:0'3_0(n5_0), rt in Omega(1 + n5_0) Induction Base: id_inc(gen_s:c:0'3_0(0)) ->_R^Omega(1) 0' Induction Step: id_inc(gen_s:c:0'3_0(+(n5_0, 1))) ->_R^Omega(1) s(id_inc(gen_s:c:0'3_0(n5_0))) ->_IH s(gen_s:c:0'3_0(c6_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(s(x)) -> f(id_inc(c(x, x))) f(c(s(x), y)) -> g(c(x, y)) g(c(s(x), y)) -> g(c(y, x)) g(c(x, s(y))) -> g(c(y, x)) g(c(x, x)) -> f(x) id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) id_inc(s(x)) -> s(id_inc(x)) id_inc(0') -> 0' id_inc(0') -> s(0') Types: f :: s:c:0' -> f:g s :: s:c:0' -> s:c:0' id_inc :: s:c:0' -> s:c:0' c :: s:c:0' -> s:c:0' -> s:c:0' g :: s:c:0' -> f:g 0' :: s:c:0' hole_f:g1_0 :: f:g hole_s:c:0'2_0 :: s:c:0' gen_s:c:0'3_0 :: Nat -> s:c:0' Generator Equations: gen_s:c:0'3_0(0) <=> 0' gen_s:c:0'3_0(+(x, 1)) <=> s(gen_s:c:0'3_0(x)) The following defined symbols remain to be analysed: id_inc, f, g They will be analysed ascendingly in the following order: id_inc < f f = g ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(s(x)) -> f(id_inc(c(x, x))) f(c(s(x), y)) -> g(c(x, y)) g(c(s(x), y)) -> g(c(y, x)) g(c(x, s(y))) -> g(c(y, x)) g(c(x, x)) -> f(x) id_inc(c(x, y)) -> c(id_inc(x), id_inc(y)) id_inc(s(x)) -> s(id_inc(x)) id_inc(0') -> 0' id_inc(0') -> s(0') Types: f :: s:c:0' -> f:g s :: s:c:0' -> s:c:0' id_inc :: s:c:0' -> s:c:0' c :: s:c:0' -> s:c:0' -> s:c:0' g :: s:c:0' -> f:g 0' :: s:c:0' hole_f:g1_0 :: f:g hole_s:c:0'2_0 :: s:c:0' gen_s:c:0'3_0 :: Nat -> s:c:0' Lemmas: id_inc(gen_s:c:0'3_0(n5_0)) -> gen_s:c:0'3_0(n5_0), rt in Omega(1 + n5_0) Generator Equations: gen_s:c:0'3_0(0) <=> 0' gen_s:c:0'3_0(+(x, 1)) <=> s(gen_s:c:0'3_0(x)) The following defined symbols remain to be analysed: g, f They will be analysed ascendingly in the following order: f = g