/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 301 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 70 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 51 ms] (16) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0' first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0' first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s del :: 0':s -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false first :: nil:cons -> 0':s doublelist :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: double, del, eq, doublelist They will be analysed ascendingly in the following order: double < doublelist eq < del del < doublelist ---------------------------------------- (6) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0' first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s del :: 0':s -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false first :: nil:cons -> 0':s doublelist :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: double, del, eq, doublelist They will be analysed ascendingly in the following order: double < doublelist eq < del del < doublelist ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s4_0(n7_0)) -> gen_0':s4_0(*(2, n7_0)), rt in Omega(1 + n7_0) Induction Base: double(gen_0':s4_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s4_0(n7_0)))) ->_IH s(s(gen_0':s4_0(*(2, c8_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0' first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s del :: 0':s -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false first :: nil:cons -> 0':s doublelist :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: double, del, eq, doublelist They will be analysed ascendingly in the following order: double < doublelist eq < del del < doublelist ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0' first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s del :: 0':s -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false first :: nil:cons -> 0':s doublelist :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: double(gen_0':s4_0(n7_0)) -> gen_0':s4_0(*(2, n7_0)), rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: eq, del, doublelist They will be analysed ascendingly in the following order: eq < del del < doublelist ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) -> true, rt in Omega(1 + n275_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n275_0, 1)), gen_0':s4_0(+(n275_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0' first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s del :: 0':s -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false first :: nil:cons -> 0':s doublelist :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: double(gen_0':s4_0(n7_0)) -> gen_0':s4_0(*(2, n7_0)), rt in Omega(1 + n7_0) eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) -> true, rt in Omega(1 + n275_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: del, doublelist They will be analysed ascendingly in the following order: del < doublelist ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: doublelist(gen_nil:cons5_0(n930_0)) -> gen_nil:cons5_0(n930_0), rt in Omega(1 + n930_0) Induction Base: doublelist(gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: doublelist(gen_nil:cons5_0(+(n930_0, 1))) ->_R^Omega(1) cons(double(0'), doublelist(del(first(cons(0', gen_nil:cons5_0(n930_0))), cons(0', gen_nil:cons5_0(n930_0))))) ->_L^Omega(1) cons(gen_0':s4_0(*(2, 0)), doublelist(del(first(cons(0', gen_nil:cons5_0(n930_0))), cons(0', gen_nil:cons5_0(n930_0))))) ->_R^Omega(1) cons(gen_0':s4_0(0), doublelist(del(0', cons(0', gen_nil:cons5_0(n930_0))))) ->_R^Omega(1) cons(gen_0':s4_0(0), doublelist(if(eq(0', 0'), 0', 0', gen_nil:cons5_0(n930_0)))) ->_L^Omega(1) cons(gen_0':s4_0(0), doublelist(if(true, 0', 0', gen_nil:cons5_0(n930_0)))) ->_R^Omega(1) cons(gen_0':s4_0(0), doublelist(gen_nil:cons5_0(n930_0))) ->_IH cons(gen_0':s4_0(0), gen_nil:cons5_0(c931_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) BOUNDS(1, INF)