/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 250 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 7 ms] (16) proven lower bound (17) LowerBoundPropagationProof [FINISHED, 0 ms] (18) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) Types: last :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons del :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false s :: 0':s -> 0':s reverse :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: last, del, eq, reverse They will be analysed ascendingly in the following order: last < reverse eq < del del < reverse ---------------------------------------- (6) Obligation: TRS: Rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) Types: last :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons del :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false s :: 0':s -> 0':s reverse :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: last, del, eq, reverse They will be analysed ascendingly in the following order: last < reverse eq < del del < reverse ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: last(gen_nil:cons5_0(+(1, n7_0))) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) Induction Base: last(gen_nil:cons5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: last(gen_nil:cons5_0(+(1, +(n7_0, 1)))) ->_R^Omega(1) last(cons(0', gen_nil:cons5_0(n7_0))) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) Types: last :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons del :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false s :: 0':s -> 0':s reverse :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: last, del, eq, reverse They will be analysed ascendingly in the following order: last < reverse eq < del del < reverse ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) Types: last :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons del :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false s :: 0':s -> 0':s reverse :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons5_0(+(1, n7_0))) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: eq, del, reverse They will be analysed ascendingly in the following order: eq < del del < reverse ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n335_0), gen_0':s4_0(n335_0)) -> true, rt in Omega(1 + n335_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n335_0, 1)), gen_0':s4_0(+(n335_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n335_0), gen_0':s4_0(n335_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) Types: last :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons del :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false s :: 0':s -> 0':s reverse :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons5_0(+(1, n7_0))) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) eq(gen_0':s4_0(n335_0), gen_0':s4_0(n335_0)) -> true, rt in Omega(1 + n335_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: del, reverse They will be analysed ascendingly in the following order: del < reverse ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: reverse(gen_nil:cons5_0(n984_0)) -> gen_nil:cons5_0(n984_0), rt in Omega(1 + n984_0 + n984_0^2) Induction Base: reverse(gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: reverse(gen_nil:cons5_0(+(n984_0, 1))) ->_R^Omega(1) cons(last(cons(0', gen_nil:cons5_0(n984_0))), reverse(del(last(cons(0', gen_nil:cons5_0(n984_0))), cons(0', gen_nil:cons5_0(n984_0))))) ->_L^Omega(1 + n984_0) cons(gen_0':s4_0(0), reverse(del(last(cons(0', gen_nil:cons5_0(n984_0))), cons(0', gen_nil:cons5_0(n984_0))))) ->_L^Omega(1 + n984_0) cons(gen_0':s4_0(0), reverse(del(gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n984_0))))) ->_R^Omega(1) cons(gen_0':s4_0(0), reverse(if(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), 0', gen_nil:cons5_0(n984_0)))) ->_L^Omega(1) cons(gen_0':s4_0(0), reverse(if(true, gen_0':s4_0(0), 0', gen_nil:cons5_0(n984_0)))) ->_R^Omega(1) cons(gen_0':s4_0(0), reverse(gen_nil:cons5_0(n984_0))) ->_IH cons(gen_0':s4_0(0), gen_nil:cons5_0(c985_0)) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: last(nil) -> 0' last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) Types: last :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons del :: 0':s -> nil:cons -> nil:cons if :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false s :: 0':s -> 0':s reverse :: nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons5_0(+(1, n7_0))) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) eq(gen_0':s4_0(n335_0), gen_0':s4_0(n335_0)) -> true, rt in Omega(1 + n335_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: reverse ---------------------------------------- (17) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (18) BOUNDS(n^2, INF)