/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 236 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 48 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: nonZero(0) -> false nonZero(s(x)) -> true p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0) rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: nonZero(0') -> false nonZero(s(x)) -> true p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0') rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: nonZero(0') -> false nonZero(s(x)) -> true p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0') rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Types: nonZero :: 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true p :: 0':s -> 0':s id_inc :: 0':s -> 0':s random :: 0':s -> 0':s rand :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: p, rand They will be analysed ascendingly in the following order: p < rand ---------------------------------------- (6) Obligation: TRS: Rules: nonZero(0') -> false nonZero(s(x)) -> true p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0') rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Types: nonZero :: 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true p :: 0':s -> 0':s id_inc :: 0':s -> 0':s random :: 0':s -> 0':s rand :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: p, rand They will be analysed ascendingly in the following order: p < rand ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s3_0(+(1, n5_0))) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Induction Base: p(gen_0':s3_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s3_0(n5_0)))) ->_IH s(gen_0':s3_0(c6_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: nonZero(0') -> false nonZero(s(x)) -> true p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0') rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Types: nonZero :: 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true p :: 0':s -> 0':s id_inc :: 0':s -> 0':s random :: 0':s -> 0':s rand :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: p, rand They will be analysed ascendingly in the following order: p < rand ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: nonZero(0') -> false nonZero(s(x)) -> true p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0') rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Types: nonZero :: 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true p :: 0':s -> 0':s id_inc :: 0':s -> 0':s random :: 0':s -> 0':s rand :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: p(gen_0':s3_0(+(1, n5_0))) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: rand ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rand(gen_0':s3_0(n198_0), gen_0':s3_0(b)) -> gen_0':s3_0(b), rt in Omega(1 + n198_0 + n198_0^2) Induction Base: rand(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) if(nonZero(gen_0':s3_0(0)), gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) if(false, gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: rand(gen_0':s3_0(+(n198_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) if(nonZero(gen_0':s3_0(+(n198_0, 1))), gen_0':s3_0(+(n198_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) if(true, gen_0':s3_0(+(1, n198_0)), gen_0':s3_0(b)) ->_R^Omega(1) rand(p(gen_0':s3_0(+(1, n198_0))), id_inc(gen_0':s3_0(b))) ->_L^Omega(1 + n198_0) rand(gen_0':s3_0(n198_0), id_inc(gen_0':s3_0(b))) ->_R^Omega(1) rand(gen_0':s3_0(n198_0), gen_0':s3_0(b)) ->_IH gen_0':s3_0(b) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: nonZero(0') -> false nonZero(s(x)) -> true p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0') rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Types: nonZero :: 0':s -> false:true 0' :: 0':s false :: false:true s :: 0':s -> 0':s true :: false:true p :: 0':s -> 0':s id_inc :: 0':s -> 0':s random :: 0':s -> 0':s rand :: 0':s -> 0':s -> 0':s if :: false:true -> 0':s -> 0':s -> 0':s hole_false:true1_0 :: false:true hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: p(gen_0':s3_0(+(1, n5_0))) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: rand ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^2, INF)