/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^5)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 4 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 27 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 44 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 138 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 62 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 92 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 126 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 76 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 68 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 178 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (78) CpxRNTS (79) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 77 ms] (82) CpxRNTS (83) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) FinalProof [FINISHED, 0 ms] (86) BOUNDS(1, n^5) (87) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (88) CpxTRS (89) SlicingProof [LOWER BOUND(ID), 0 ms] (90) CpxTRS (91) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (92) typed CpxTrs (93) OrderProof [LOWER BOUND(ID), 0 ms] (94) typed CpxTrs (95) RewriteLemmaProof [LOWER BOUND(ID), 423 ms] (96) BEST (97) proven lower bound (98) LowerBoundPropagationProof [FINISHED, 0 ms] (99) BOUNDS(n^1, INF) (100) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). The TRS R consists of the following rules: f_0(x) -> a f_1(x) -> g_1(x, x) g_1(s(x), y) -> b(f_0(y), g_1(x, y)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^5). The TRS R consists of the following rules: f_0(x) -> a f_1(x) -> g_1(x, x) g_1(s(x), y) -> b(f_0(y), g_1(x, y)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^5). The TRS R consists of the following rules: f_0(x) -> a [1] f_1(x) -> g_1(x, x) [1] g_1(s(x), y) -> b(f_0(y), g_1(x, y)) [1] f_2(x) -> g_2(x, x) [1] g_2(s(x), y) -> b(f_1(y), g_2(x, y)) [1] f_3(x) -> g_3(x, x) [1] g_3(s(x), y) -> b(f_2(y), g_3(x, y)) [1] f_4(x) -> g_4(x, x) [1] g_4(s(x), y) -> b(f_3(y), g_4(x, y)) [1] f_5(x) -> g_5(x, x) [1] g_5(s(x), y) -> b(f_4(y), g_5(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f_0(x) -> a [1] f_1(x) -> g_1(x, x) [1] g_1(s(x), y) -> b(f_0(y), g_1(x, y)) [1] f_2(x) -> g_2(x, x) [1] g_2(s(x), y) -> b(f_1(y), g_2(x, y)) [1] f_3(x) -> g_3(x, x) [1] g_3(s(x), y) -> b(f_2(y), g_3(x, y)) [1] f_4(x) -> g_4(x, x) [1] g_4(s(x), y) -> b(f_3(y), g_4(x, y)) [1] f_5(x) -> g_5(x, x) [1] g_5(s(x), y) -> b(f_4(y), g_5(x, y)) [1] The TRS has the following type information: f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_0_1 f_1_1 g_1_2 f_2_1 g_2_2 f_3_1 g_3_2 f_4_1 g_4_2 f_5_1 g_5_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f_0(x) -> a [1] f_1(x) -> g_1(x, x) [1] g_1(s(x), y) -> b(f_0(y), g_1(x, y)) [1] f_2(x) -> g_2(x, x) [1] g_2(s(x), y) -> b(f_1(y), g_2(x, y)) [1] f_3(x) -> g_3(x, x) [1] g_3(s(x), y) -> b(f_2(y), g_3(x, y)) [1] f_4(x) -> g_4(x, x) [1] g_4(s(x), y) -> b(f_3(y), g_4(x, y)) [1] f_5(x) -> g_5(x, x) [1] g_5(s(x), y) -> b(f_4(y), g_5(x, y)) [1] The TRS has the following type information: f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b const :: s Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f_0(x) -> a [1] f_1(x) -> g_1(x, x) [1] g_1(s(x), y) -> b(f_0(y), g_1(x, y)) [1] f_2(x) -> g_2(x, x) [1] g_2(s(x), y) -> b(f_1(y), g_2(x, y)) [1] f_3(x) -> g_3(x, x) [1] g_3(s(x), y) -> b(f_2(y), g_3(x, y)) [1] f_4(x) -> g_4(x, x) [1] g_4(s(x), y) -> b(f_3(y), g_4(x, y)) [1] f_5(x) -> g_5(x, x) [1] g_5(s(x), y) -> b(f_4(y), g_5(x, y)) [1] The TRS has the following type information: f_0 :: s -> a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b const :: s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 const => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: x >= 0, z = x f_1(z) -{ 1 }-> g_1(x, x) :|: x >= 0, z = x f_2(z) -{ 1 }-> g_2(x, x) :|: x >= 0, z = x f_3(z) -{ 1 }-> g_3(x, x) :|: x >= 0, z = x f_4(z) -{ 1 }-> g_4(x, x) :|: x >= 0, z = x f_5(z) -{ 1 }-> g_5(x, x) :|: x >= 0, z = x g_1(z, z') -{ 1 }-> 1 + f_0(y) + g_1(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_2(z, z') -{ 1 }-> 1 + f_1(y) + g_2(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_3(z, z') -{ 1 }-> 1 + f_2(y) + g_3(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_4(z, z') -{ 1 }-> 1 + f_3(y) + g_4(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_5(z, z') -{ 1 }-> 1 + f_4(y) + g_5(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: f_0(z) -{ 1 }-> 0 :|: x >= 0, z = x ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: x >= 0, z = x f_1(z) -{ 1 }-> g_1(x, x) :|: x >= 0, z = x f_2(z) -{ 1 }-> g_2(x, x) :|: x >= 0, z = x f_3(z) -{ 1 }-> g_3(x, x) :|: x >= 0, z = x f_4(z) -{ 1 }-> g_4(x, x) :|: x >= 0, z = x f_5(z) -{ 1 }-> g_5(x, x) :|: x >= 0, z = x g_1(z, z') -{ 2 }-> 1 + 0 + g_1(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y, x' >= 0, y = x' g_2(z, z') -{ 1 }-> 1 + f_1(y) + g_2(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_3(z, z') -{ 1 }-> 1 + f_2(y) + g_3(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_4(z, z') -{ 1 }-> 1 + f_3(y) + g_4(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y g_5(z, z') -{ 1 }-> 1 + f_4(y) + g_5(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f_0 } { g_1 } { f_1 } { g_2 } { f_2 } { g_3 } { f_3 } { g_4 } { f_4 } { g_5 } { f_5 } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_0}, {g_1}, {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_0}, {g_1}, {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_0}, {g_1}, {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_1}, {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_1}, {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_1}, {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 }-> g_1(z, z) :|: z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2 }-> 1 + 0 + g_1(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_1}, {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 1 }-> 1 + f_1(z') + g_2(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2 + 2*z' }-> 1 + s'' + g_2(z - 1, z') :|: s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g_2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2 + 2*z' }-> 1 + s'' + g_2(z - 1, z') :|: s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_2}, {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: ?, size: O(1) [0] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g_2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z + 2*z*z' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 }-> g_2(z, z) :|: z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2 + 2*z' }-> 1 + s'' + g_2(z - 1, z') :|: s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f_2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_2}, {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: ?, size: O(1) [0] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f_2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 2*z + 2*z^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 1 }-> 1 + f_2(z') + g_3(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2 + 2*z' + 2*z'^2 }-> 1 + s3 + g_3(z - 1, z') :|: s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g_3 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2 + 2*z' + 2*z'^2 }-> 1 + s3 + g_3(z - 1, z') :|: s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_3}, {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: ?, size: O(1) [0] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: g_3 after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 2*z + 2*z*z' + 2*z*z'^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 }-> g_3(z, z) :|: z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2 + 2*z' + 2*z'^2 }-> 1 + s3 + g_3(z - 1, z') :|: s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f_3 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_3}, {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: ?, size: O(1) [0] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f_3 after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 2*z + 2*z^2 + 2*z^3 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 1 }-> 1 + f_3(z') + g_4(z - 1, z') :|: z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2 + 2*z' + 2*z'^2 + 2*z'^3 }-> 1 + s6 + g_4(z - 1, z') :|: s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g_4 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2 + 2*z' + 2*z'^2 + 2*z'^3 }-> 1 + s6 + g_4(z - 1, z') :|: s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_4}, {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: ?, size: O(1) [0] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: g_4 after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 }-> g_4(z, z) :|: z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2 + 2*z' + 2*z'^2 + 2*z'^3 }-> 1 + s6 + g_4(z - 1, z') :|: s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f_4 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_4}, {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: ?, size: O(1) [0] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f_4 after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 1 }-> 1 + f_4(z') + g_5(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 2 + 2*z' + 2*z'^2 + 2*z'^3 + 2*z'^4 }-> 1 + s9 + g_5(z - 1, z') :|: s9 >= 0, s9 <= 0, z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g_5 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 2 + 2*z' + 2*z'^2 + 2*z'^3 + 2*z'^4 }-> 1 + s9 + g_5(z - 1, z') :|: s9 >= 0, s9 <= 0, z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {g_5}, {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] g_5: runtime: ?, size: O(1) [0] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: g_5 after applying outer abstraction to obtain an ITS, resulting in: O(n^5) with polynomial bound: 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4 ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 }-> g_5(z, z) :|: z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 2 + 2*z' + 2*z'^2 + 2*z'^3 + 2*z'^4 }-> 1 + s9 + g_5(z - 1, z') :|: s9 >= 0, s9 <= 0, z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] g_5: runtime: O(n^5) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4], size: O(1) [0] ---------------------------------------- (79) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 + 2*z^5 }-> s10 :|: s10 >= 0, s10 <= 0, z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4 }-> 1 + s9 + s11 :|: s11 >= 0, s11 <= 0, s9 >= 0, s9 <= 0, z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] g_5: runtime: O(n^5) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4], size: O(1) [0] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f_5 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 + 2*z^5 }-> s10 :|: s10 >= 0, s10 <= 0, z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4 }-> 1 + s9 + s11 :|: s11 >= 0, s11 <= 0, s9 >= 0, s9 <= 0, z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {f_5} Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] g_5: runtime: O(n^5) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4], size: O(1) [0] f_5: runtime: ?, size: O(1) [0] ---------------------------------------- (83) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f_5 after applying outer abstraction to obtain an ITS, resulting in: O(n^5) with polynomial bound: 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 + 2*z^5 ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: f_0(z) -{ 1 }-> 0 :|: z >= 0 f_1(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= 0, z >= 0 f_2(z) -{ 1 + 2*z + 2*z^2 }-> s1 :|: s1 >= 0, s1 <= 0, z >= 0 f_3(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 }-> s4 :|: s4 >= 0, s4 <= 0, z >= 0 f_4(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 }-> s7 :|: s7 >= 0, s7 <= 0, z >= 0 f_5(z) -{ 1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 + 2*z^5 }-> s10 :|: s10 >= 0, s10 <= 0, z >= 0 g_1(z, z') -{ 2*z }-> 1 + 0 + s' :|: s' >= 0, s' <= 0, z - 1 >= 0, z' >= 0 g_2(z, z') -{ 2*z + 2*z*z' }-> 1 + s'' + s2 :|: s2 >= 0, s2 <= 0, s'' >= 0, s'' <= 0, z - 1 >= 0, z' >= 0 g_3(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 }-> 1 + s3 + s5 :|: s5 >= 0, s5 <= 0, s3 >= 0, s3 <= 0, z - 1 >= 0, z' >= 0 g_4(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 }-> 1 + s6 + s8 :|: s8 >= 0, s8 <= 0, s6 >= 0, s6 <= 0, z - 1 >= 0, z' >= 0 g_5(z, z') -{ 2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4 }-> 1 + s9 + s11 :|: s11 >= 0, s11 <= 0, s9 >= 0, s9 <= 0, z - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: f_0: runtime: O(1) [1], size: O(1) [0] g_1: runtime: O(n^1) [2*z], size: O(1) [0] f_1: runtime: O(n^1) [1 + 2*z], size: O(1) [0] g_2: runtime: O(n^2) [2*z + 2*z*z'], size: O(1) [0] f_2: runtime: O(n^2) [1 + 2*z + 2*z^2], size: O(1) [0] g_3: runtime: O(n^3) [2*z + 2*z*z' + 2*z*z'^2], size: O(1) [0] f_3: runtime: O(n^3) [1 + 2*z + 2*z^2 + 2*z^3], size: O(1) [0] g_4: runtime: O(n^4) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3], size: O(1) [0] f_4: runtime: O(n^4) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4], size: O(1) [0] g_5: runtime: O(n^5) [2*z + 2*z*z' + 2*z*z'^2 + 2*z*z'^3 + 2*z*z'^4], size: O(1) [0] f_5: runtime: O(n^5) [1 + 2*z + 2*z^2 + 2*z^3 + 2*z^4 + 2*z^5], size: O(1) [0] ---------------------------------------- (85) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (86) BOUNDS(1, n^5) ---------------------------------------- (87) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (88) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f_0(x) -> a f_1(x) -> g_1(x, x) g_1(s(x), y) -> b(f_0(y), g_1(x, y)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (89) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: f_0/0 g_1/1 ---------------------------------------- (90) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f_0 -> a f_1(x) -> g_1(x) g_1(s(x)) -> b(f_0, g_1(x)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (91) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (92) Obligation: TRS: Rules: f_0 -> a f_1(x) -> g_1(x) g_1(s(x)) -> b(f_0, g_1(x)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) Types: f_0 :: a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b hole_a:b1_6 :: a:b hole_s2_6 :: s gen_a:b3_6 :: Nat -> a:b gen_s4_6 :: Nat -> s ---------------------------------------- (93) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g_1, g_2, g_3, g_4, g_5 ---------------------------------------- (94) Obligation: TRS: Rules: f_0 -> a f_1(x) -> g_1(x) g_1(s(x)) -> b(f_0, g_1(x)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) Types: f_0 :: a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b hole_a:b1_6 :: a:b hole_s2_6 :: s gen_a:b3_6 :: Nat -> a:b gen_s4_6 :: Nat -> s Generator Equations: gen_a:b3_6(0) <=> a gen_a:b3_6(+(x, 1)) <=> b(a, gen_a:b3_6(x)) gen_s4_6(0) <=> hole_s2_6 gen_s4_6(+(x, 1)) <=> s(gen_s4_6(x)) The following defined symbols remain to be analysed: g_1, g_2, g_3, g_4, g_5 ---------------------------------------- (95) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g_1(gen_s4_6(+(1, n6_6))) -> *5_6, rt in Omega(n6_6) Induction Base: g_1(gen_s4_6(+(1, 0))) Induction Step: g_1(gen_s4_6(+(1, +(n6_6, 1)))) ->_R^Omega(1) b(f_0, g_1(gen_s4_6(+(1, n6_6)))) ->_R^Omega(1) b(a, g_1(gen_s4_6(+(1, n6_6)))) ->_IH b(a, *5_6) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (96) Complex Obligation (BEST) ---------------------------------------- (97) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f_0 -> a f_1(x) -> g_1(x) g_1(s(x)) -> b(f_0, g_1(x)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) Types: f_0 :: a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b hole_a:b1_6 :: a:b hole_s2_6 :: s gen_a:b3_6 :: Nat -> a:b gen_s4_6 :: Nat -> s Generator Equations: gen_a:b3_6(0) <=> a gen_a:b3_6(+(x, 1)) <=> b(a, gen_a:b3_6(x)) gen_s4_6(0) <=> hole_s2_6 gen_s4_6(+(x, 1)) <=> s(gen_s4_6(x)) The following defined symbols remain to be analysed: g_1, g_2, g_3, g_4, g_5 ---------------------------------------- (98) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (99) BOUNDS(n^1, INF) ---------------------------------------- (100) Obligation: TRS: Rules: f_0 -> a f_1(x) -> g_1(x) g_1(s(x)) -> b(f_0, g_1(x)) f_2(x) -> g_2(x, x) g_2(s(x), y) -> b(f_1(y), g_2(x, y)) f_3(x) -> g_3(x, x) g_3(s(x), y) -> b(f_2(y), g_3(x, y)) f_4(x) -> g_4(x, x) g_4(s(x), y) -> b(f_3(y), g_4(x, y)) f_5(x) -> g_5(x, x) g_5(s(x), y) -> b(f_4(y), g_5(x, y)) Types: f_0 :: a:b a :: a:b f_1 :: s -> a:b g_1 :: s -> a:b s :: s -> s b :: a:b -> a:b -> a:b f_2 :: s -> a:b g_2 :: s -> s -> a:b f_3 :: s -> a:b g_3 :: s -> s -> a:b f_4 :: s -> a:b g_4 :: s -> s -> a:b f_5 :: s -> a:b g_5 :: s -> s -> a:b hole_a:b1_6 :: a:b hole_s2_6 :: s gen_a:b3_6 :: Nat -> a:b gen_s4_6 :: Nat -> s Lemmas: g_1(gen_s4_6(+(1, n6_6))) -> *5_6, rt in Omega(n6_6) Generator Equations: gen_a:b3_6(0) <=> a gen_a:b3_6(+(x, 1)) <=> b(a, gen_a:b3_6(x)) gen_s4_6(0) <=> hole_s2_6 gen_s4_6(+(x, 1)) <=> s(gen_s4_6(x)) The following defined symbols remain to be analysed: g_2, g_3, g_4, g_5