/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^5)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 3157 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 3415 ms] (22) CpxRNTS (23) FinalProof [FINISHED, 0 ms] (24) BOUNDS(1, n^5) (25) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (26) TRS for Loop Detection (27) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (28) BEST (29) proven lower bound (30) LowerBoundPropagationProof [FINISHED, 0 ms] (31) BOUNDS(n^1, INF) (32) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) f(0, 0, 0, 0, 0) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^5). The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) f(0, 0, 0, 0, 0) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^5). The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) [1] f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) [1] f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) [1] f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) [1] f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) [1] f(0, 0, 0, 0, 0) -> 0 [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) [1] f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) [1] f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) [1] f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) [1] f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) [1] f(0, 0, 0, 0, 0) -> 0 [1] The TRS has the following type information: f :: s:0 -> s:0 -> s:0 -> s:0 -> s:0 -> s:0 s :: s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_5 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) [1] f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) [1] f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) [1] f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) [1] f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) [1] f(0, 0, 0, 0, 0) -> 0 [1] The TRS has the following type information: f :: s:0 -> s:0 -> s:0 -> s:0 -> s:0 -> s:0 s :: s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) [1] f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) [1] f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) [1] f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) [1] f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) [1] f(0, 0, 0, 0, 0) -> 0 [1] The TRS has the following type information: f :: s:0 -> s:0 -> s:0 -> s:0 -> s:0 -> s:0 s :: s:0 -> s:0 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'', z1, z2) -{ 1 }-> f(x1, x2, x3, x4, x5) :|: z' = x2, z1 = x4, x1 >= 0, x4 >= 0, x5 >= 0, z = 1 + x1, z'' = x3, z2 = x5, x2 >= 0, x3 >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(x2, x2, x3, x4, x5) :|: z1 = x4, x4 >= 0, x5 >= 0, z' = 1 + x2, z'' = x3, z = 0, z2 = x5, x2 >= 0, x3 >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(x3, x3, x3, x4, x5) :|: z1 = x4, x4 >= 0, x5 >= 0, z'' = 1 + x3, z = 0, z2 = x5, x3 >= 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(x4, x4, x4, x4, x5) :|: z'' = 0, x4 >= 0, x5 >= 0, z1 = 1 + x4, z = 0, z2 = x5, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(x5, x5, x5, x5, x5) :|: z'' = 0, z1 = 0, x5 >= 0, z = 0, z2 = 1 + x5, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> 0 :|: z'' = 0, z1 = 0, z2 = 0, z = 0, z' = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'', z1, z2) -{ 1 }-> f(z - 1, z', z'', z1, z2) :|: z - 1 >= 0, z1 >= 0, z2 >= 0, z' >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z' - 1, z' - 1, z'', z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z' - 1 >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z'' - 1, z'' - 1, z'' - 1, z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z'' - 1 >= 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z1 - 1, z1 - 1, z1 - 1, z1 - 1, z2) :|: z'' = 0, z1 - 1 >= 0, z2 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z2 - 1, z2 - 1, z2 - 1, z2 - 1, z2 - 1) :|: z'' = 0, z1 = 0, z2 - 1 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> 0 :|: z'' = 0, z1 = 0, z2 = 0, z = 0, z' = 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'', z1, z2) -{ 1 }-> f(z - 1, z', z'', z1, z2) :|: z - 1 >= 0, z1 >= 0, z2 >= 0, z' >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z' - 1, z' - 1, z'', z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z' - 1 >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z'' - 1, z'' - 1, z'' - 1, z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z'' - 1 >= 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z1 - 1, z1 - 1, z1 - 1, z1 - 1, z2) :|: z'' = 0, z1 - 1 >= 0, z2 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z2 - 1, z2 - 1, z2 - 1, z2 - 1, z2 - 1) :|: z'' = 0, z1 = 0, z2 - 1 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> 0 :|: z'' = 0, z1 = 0, z2 = 0, z = 0, z' = 0 Function symbols to be analyzed: {f} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'', z1, z2) -{ 1 }-> f(z - 1, z', z'', z1, z2) :|: z - 1 >= 0, z1 >= 0, z2 >= 0, z' >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z' - 1, z' - 1, z'', z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z' - 1 >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z'' - 1, z'' - 1, z'' - 1, z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z'' - 1 >= 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z1 - 1, z1 - 1, z1 - 1, z1 - 1, z2) :|: z'' = 0, z1 - 1 >= 0, z2 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z2 - 1, z2 - 1, z2 - 1, z2 - 1, z2 - 1) :|: z'' = 0, z1 = 0, z2 - 1 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> 0 :|: z'' = 0, z1 = 0, z2 = 0, z = 0, z' = 0 Function symbols to be analyzed: {f} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'', z1, z2) -{ 1 }-> f(z - 1, z', z'', z1, z2) :|: z - 1 >= 0, z1 >= 0, z2 >= 0, z' >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z' - 1, z' - 1, z'', z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z' - 1 >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z'' - 1, z'' - 1, z'' - 1, z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z'' - 1 >= 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z1 - 1, z1 - 1, z1 - 1, z1 - 1, z2) :|: z'' = 0, z1 - 1 >= 0, z2 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z2 - 1, z2 - 1, z2 - 1, z2 - 1, z2 - 1) :|: z'' = 0, z1 = 0, z2 - 1 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> 0 :|: z'' = 0, z1 = 0, z2 = 0, z = 0, z' = 0 Function symbols to be analyzed: {f} Previous analysis results are: f: runtime: ?, size: O(1) [0] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^5) with polynomial bound: 1 + z + z' + z'*z'' + z'*z''*z1 + z'*z''*z1*z2 + z'*z''*z1*z2^2 + z'*z''*z1^2 + z'*z''*z2 + z'*z''*z2^2 + z'*z''*z2^3 + z'*z''^2 + z'*z1 + z'*z1*z2 + 3*z'*z1*z2^2 + 2*z'*z1*z2^3 + z'*z1^2 + 2*z'*z1^2*z2 + z'*z1^2*z2^2 + z'*z1^3 + z'*z2 + z'*z2^2 + 2*z'*z2^3 + z'*z2^4 + z'^2 + z'' + 2*z''*z1 + 5*z''*z1*z2 + 7*z''*z1*z2^2 + 4*z''*z1*z2^3 + 4*z''*z1^2 + 4*z''*z1^2*z2 + 2*z''*z1^2*z2^2 + 2*z''*z1^3 + 2*z''*z2 + 4*z''*z2^2 + 5*z''*z2^3 + 2*z''*z2^4 + 2*z''^2 + 2*z''^2*z1 + z''^2*z1*z2 + z''^2*z1*z2^2 + z''^2*z1^2 + 2*z''^2*z2 + z''^2*z2^2 + z''^2*z2^3 + z''^3 + z1 + 3*z1*z2 + 9*z1*z2^2 + 9*z1*z2^3 + 3*z1*z2^4 + 3*z1^2 + 6*z1^2*z2 + 7*z1^2*z2^2 + 3*z1^2*z2^3 + 3*z1^3 + 3*z1^3*z2 + z1^3*z2^2 + z1^4 + z2 + 4*z2^2 + 6*z2^3 + 4*z2^4 + z2^5 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'', z1, z2) -{ 1 }-> f(z - 1, z', z'', z1, z2) :|: z - 1 >= 0, z1 >= 0, z2 >= 0, z' >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z' - 1, z' - 1, z'', z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z' - 1 >= 0, z'' >= 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z'' - 1, z'' - 1, z'' - 1, z1, z2) :|: z1 >= 0, z2 >= 0, z = 0, z'' - 1 >= 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z1 - 1, z1 - 1, z1 - 1, z1 - 1, z2) :|: z'' = 0, z1 - 1 >= 0, z2 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> f(z2 - 1, z2 - 1, z2 - 1, z2 - 1, z2 - 1) :|: z'' = 0, z1 = 0, z2 - 1 >= 0, z = 0, z' = 0 f(z, z', z'', z1, z2) -{ 1 }-> 0 :|: z'' = 0, z1 = 0, z2 = 0, z = 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: f: runtime: O(n^5) [1 + z + z' + z'*z'' + z'*z''*z1 + z'*z''*z1*z2 + z'*z''*z1*z2^2 + z'*z''*z1^2 + z'*z''*z2 + z'*z''*z2^2 + z'*z''*z2^3 + z'*z''^2 + z'*z1 + z'*z1*z2 + 3*z'*z1*z2^2 + 2*z'*z1*z2^3 + z'*z1^2 + 2*z'*z1^2*z2 + z'*z1^2*z2^2 + z'*z1^3 + z'*z2 + z'*z2^2 + 2*z'*z2^3 + z'*z2^4 + z'^2 + z'' + 2*z''*z1 + 5*z''*z1*z2 + 7*z''*z1*z2^2 + 4*z''*z1*z2^3 + 4*z''*z1^2 + 4*z''*z1^2*z2 + 2*z''*z1^2*z2^2 + 2*z''*z1^3 + 2*z''*z2 + 4*z''*z2^2 + 5*z''*z2^3 + 2*z''*z2^4 + 2*z''^2 + 2*z''^2*z1 + z''^2*z1*z2 + z''^2*z1*z2^2 + z''^2*z1^2 + 2*z''^2*z2 + z''^2*z2^2 + z''^2*z2^3 + z''^3 + z1 + 3*z1*z2 + 9*z1*z2^2 + 9*z1*z2^3 + 3*z1*z2^4 + 3*z1^2 + 6*z1^2*z2 + 7*z1^2*z2^2 + 3*z1^2*z2^3 + 3*z1^3 + 3*z1^3*z2 + z1^3*z2^2 + z1^4 + z2 + 4*z2^2 + 6*z2^3 + 4*z2^4 + z2^5], size: O(1) [0] ---------------------------------------- (23) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (24) BOUNDS(1, n^5) ---------------------------------------- (25) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (26) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) f(0, 0, 0, 0, 0) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (27) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(s(x1), x2, x3, x4, x5) ->^+ f(x1, x2, x3, x4, x5) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x1 / s(x1)]. The result substitution is [ ]. ---------------------------------------- (28) Complex Obligation (BEST) ---------------------------------------- (29) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) f(0, 0, 0, 0, 0) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (30) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (31) BOUNDS(n^1, INF) ---------------------------------------- (32) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^5). The TRS R consists of the following rules: f(s(x1), x2, x3, x4, x5) -> f(x1, x2, x3, x4, x5) f(0, s(x2), x3, x4, x5) -> f(x2, x2, x3, x4, x5) f(0, 0, s(x3), x4, x5) -> f(x3, x3, x3, x4, x5) f(0, 0, 0, s(x4), x5) -> f(x4, x4, x4, x4, x5) f(0, 0, 0, 0, s(x5)) -> f(x5, x5, x5, x5, x5) f(0, 0, 0, 0, 0) -> 0 S is empty. Rewrite Strategy: FULL