/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 387 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (14) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sort(nil) -> nil sort(cons(x, y)) -> insert(x, sort(y)) insert(x, nil) -> cons(x, nil) insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w)) choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w)) choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sort(nil) -> nil sort(cons(x, y)) -> insert(x, sort(y)) insert(x, nil) -> cons(x, nil) insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) choose(x, cons(v, w), y, 0') -> cons(x, cons(v, w)) choose(x, cons(v, w), 0', s(z)) -> cons(v, insert(x, w)) choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: sort(nil) -> nil sort(cons(x, y)) -> insert(x, sort(y)) insert(x, nil) -> cons(x, nil) insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) choose(x, cons(v, w), y, 0') -> cons(x, cons(v, w)) choose(x, cons(v, w), 0', s(z)) -> cons(v, insert(x, w)) choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) Types: sort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons insert :: 0':s -> nil:cons -> nil:cons choose :: 0':s -> nil:cons -> 0':s -> 0':s -> nil:cons 0' :: 0':s s :: 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s gen_nil:cons3_0 :: Nat -> nil:cons gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sort, insert, choose They will be analysed ascendingly in the following order: insert < sort insert = choose ---------------------------------------- (6) Obligation: TRS: Rules: sort(nil) -> nil sort(cons(x, y)) -> insert(x, sort(y)) insert(x, nil) -> cons(x, nil) insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) choose(x, cons(v, w), y, 0') -> cons(x, cons(v, w)) choose(x, cons(v, w), 0', s(z)) -> cons(v, insert(x, w)) choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) Types: sort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons insert :: 0':s -> nil:cons -> nil:cons choose :: 0':s -> nil:cons -> 0':s -> 0':s -> nil:cons 0' :: 0':s s :: 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s gen_nil:cons3_0 :: Nat -> nil:cons gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: choose, sort, insert They will be analysed ascendingly in the following order: insert < sort insert = choose ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt in Omega(1 + n6_0) Induction Base: choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) cons(gen_0':s4_0(a), cons(0', gen_nil:cons3_0(0))) Induction Step: choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) choose(gen_0':s4_0(a), cons(0', gen_nil:cons3_0(0)), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH cons(gen_0':s4_0(a), gen_nil:cons3_0(1)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: sort(nil) -> nil sort(cons(x, y)) -> insert(x, sort(y)) insert(x, nil) -> cons(x, nil) insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) choose(x, cons(v, w), y, 0') -> cons(x, cons(v, w)) choose(x, cons(v, w), 0', s(z)) -> cons(v, insert(x, w)) choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) Types: sort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons insert :: 0':s -> nil:cons -> nil:cons choose :: 0':s -> nil:cons -> 0':s -> 0':s -> nil:cons 0' :: 0':s s :: 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s gen_nil:cons3_0 :: Nat -> nil:cons gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: choose, sort, insert They will be analysed ascendingly in the following order: insert < sort insert = choose ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: sort(nil) -> nil sort(cons(x, y)) -> insert(x, sort(y)) insert(x, nil) -> cons(x, nil) insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) choose(x, cons(v, w), y, 0') -> cons(x, cons(v, w)) choose(x, cons(v, w), 0', s(z)) -> cons(v, insert(x, w)) choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) Types: sort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons insert :: 0':s -> nil:cons -> nil:cons choose :: 0':s -> nil:cons -> 0':s -> 0':s -> nil:cons 0' :: 0':s s :: 0':s -> 0':s hole_nil:cons1_0 :: nil:cons hole_0':s2_0 :: 0':s gen_nil:cons3_0 :: Nat -> nil:cons gen_0':s4_0 :: Nat -> 0':s Lemmas: choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt in Omega(1 + n6_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: insert, sort They will be analysed ascendingly in the following order: insert < sort insert = choose ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sort(gen_nil:cons3_0(n3102_0)) -> *5_0, rt in Omega(n3102_0) Induction Base: sort(gen_nil:cons3_0(0)) Induction Step: sort(gen_nil:cons3_0(+(n3102_0, 1))) ->_R^Omega(1) insert(0', sort(gen_nil:cons3_0(n3102_0))) ->_IH insert(0', *5_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) BOUNDS(1, INF)