/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 438 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 119 ms] (20) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: b(w(x)) -> w(b(x)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[9, 10, 11, 12] {(9,10,[w_1|0, b_1|0]), (9,11,[r_1|1]), (9,12,[r_1|1]), (10,10,[r_1|0]), (11,10,[w_1|1]), (11,11,[r_1|1]), (12,10,[b_1|1]), (12,12,[r_1|1])}" ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) Types: w :: r -> r r :: r -> r b :: r -> r hole_r1_0 :: r gen_r2_0 :: Nat -> r ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: w, b They will be analysed ascendingly in the following order: w < b ---------------------------------------- (12) Obligation: TRS: Rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) Types: w :: r -> r r :: r -> r b :: r -> r hole_r1_0 :: r gen_r2_0 :: Nat -> r Generator Equations: gen_r2_0(0) <=> hole_r1_0 gen_r2_0(+(x, 1)) <=> r(gen_r2_0(x)) The following defined symbols remain to be analysed: w, b They will be analysed ascendingly in the following order: w < b ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: w(gen_r2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: w(gen_r2_0(+(1, 0))) Induction Step: w(gen_r2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) r(w(gen_r2_0(+(1, n4_0)))) ->_IH r(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) Types: w :: r -> r r :: r -> r b :: r -> r hole_r1_0 :: r gen_r2_0 :: Nat -> r Generator Equations: gen_r2_0(0) <=> hole_r1_0 gen_r2_0(+(x, 1)) <=> r(gen_r2_0(x)) The following defined symbols remain to be analysed: w, b They will be analysed ascendingly in the following order: w < b ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) Types: w :: r -> r r :: r -> r b :: r -> r hole_r1_0 :: r gen_r2_0 :: Nat -> r Lemmas: w(gen_r2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_r2_0(0) <=> hole_r1_0 gen_r2_0(+(x, 1)) <=> r(gen_r2_0(x)) The following defined symbols remain to be analysed: b ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: b(gen_r2_0(+(1, n130_0))) -> *3_0, rt in Omega(n130_0) Induction Base: b(gen_r2_0(+(1, 0))) Induction Step: b(gen_r2_0(+(1, +(n130_0, 1)))) ->_R^Omega(1) r(b(gen_r2_0(+(1, n130_0)))) ->_IH r(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) BOUNDS(1, INF)