/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 246 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 45 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 320 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 125 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (42) CpxRNTS (43) FinalProof [FINISHED, 0 ms] (44) BOUNDS(1, n^1) (45) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxTRS (47) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (48) typed CpxTrs (49) OrderProof [LOWER BOUND(ID), 0 ms] (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 273 ms] (52) BEST (53) proven lower bound (54) LowerBoundPropagationProof [FINISHED, 0 ms] (55) BOUNDS(n^1, INF) (56) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: +(X, 0) -> X +(X, s(Y)) -> s(+(X, Y)) double(X) -> +(X, X) f(0, s(0), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: double([]) f(0, s(0), []) The defined contexts are: f(x0, [], x2) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: +(X, 0) -> X +(X, s(Y)) -> s(+(X, Y)) double(X) -> +(X, X) f(0, s(0), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: +(X, 0) -> X [1] +(X, s(Y)) -> s(+(X, Y)) [1] double(X) -> +(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s double :: 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> f g :: g -> g -> g Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_3 g_2 (c) The following functions are completely defined: double_1 plus_2 Due to the following rules being added: none And the following fresh constants: const, const1 ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, double(X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s double :: 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> f g :: g -> g -> g const :: f const1 :: g Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] double(X) -> plus(X, X) [1] f(0, s(0), X) -> f(X, plus(X, X), X) [2] g(X, Y) -> X [1] g(X, Y) -> Y [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s double :: 0:s -> 0:s f :: 0:s -> 0:s -> 0:s -> f g :: g -> g -> g const :: f const1 :: g Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 const1 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(X, X) :|: X >= 0, z = X f(z, z', z'') -{ 2 }-> f(X, plus(X, X), X) :|: z'' = X, X >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X plus(z, z') -{ 1 }-> X :|: X >= 0, z = X, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(X, Y) :|: Y >= 0, z' = 1 + Y, X >= 0, z = X ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { plus } { f } { double } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {double} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {double} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {double} Previous analysis results are: g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 f(z, z', z'') -{ 2 }-> f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 3 + z'' }-> f(z'', s'', z'') :|: s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 3 + z'' }-> f(z'', s'', z'') :|: s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 3 + z'' }-> f(z'', s'', z'') :|: s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 6 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 6 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {double} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] double: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + z }-> s' :|: s' >= 0, s' <= z + z, z >= 0 f(z, z', z'') -{ 6 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= z'' + z'', z'' >= 0, z' = 1 + 0, z = 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [3 + z''], size: O(1) [0] double: runtime: O(n^1) [2 + z], size: O(n^1) [2*z] ---------------------------------------- (43) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (44) BOUNDS(1, n^1) ---------------------------------------- (45) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (46) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) double(X) -> +'(X, X) f(0', s(0'), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y S is empty. Rewrite Strategy: FULL ---------------------------------------- (47) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (48) Obligation: TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) double(X) -> +'(X, X) f(0', s(0'), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> f g :: g -> g -> g hole_0':s1_0 :: 0':s hole_f2_0 :: f hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (49) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', f ---------------------------------------- (50) Obligation: TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) double(X) -> +'(X, X) f(0', s(0'), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> f g :: g -> g -> g hole_0':s1_0 :: 0':s hole_f2_0 :: f hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: +', f ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) -> gen_0':s4_0(+(n6_0, a)), rt in Omega(1 + n6_0) Induction Base: +'(gen_0':s4_0(a), gen_0':s4_0(0)) ->_R^Omega(1) gen_0':s4_0(a) Induction Step: +'(gen_0':s4_0(a), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) s(+'(gen_0':s4_0(a), gen_0':s4_0(n6_0))) ->_IH s(gen_0':s4_0(+(a, c7_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (52) Complex Obligation (BEST) ---------------------------------------- (53) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) double(X) -> +'(X, X) f(0', s(0'), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> f g :: g -> g -> g hole_0':s1_0 :: 0':s hole_f2_0 :: f hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: +', f ---------------------------------------- (54) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (55) BOUNDS(n^1, INF) ---------------------------------------- (56) Obligation: TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) double(X) -> +'(X, X) f(0', s(0'), X) -> f(X, double(X), X) g(X, Y) -> X g(X, Y) -> Y Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s -> f g :: g -> g -> g hole_0':s1_0 :: 0':s hole_f2_0 :: f hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s Lemmas: +'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) -> gen_0':s4_0(+(n6_0, a)), rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: f