/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- KILLED proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (12) CpxRelTRS (13) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRelTRS (15) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxWeightedTrs (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTypedWeightedTrs (19) CompletionProof [UPPER BOUND(ID), 0 ms] (20) CpxTypedWeightedCompleteTrs (21) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxTypedWeightedCompleteTrs (23) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) InliningProof [UPPER BOUND(ID), 257 ms] (26) CpxRNTS (27) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRNTS (29) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 170 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 3544 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 1174 ms] (42) CpxRNTS (43) CompletionProof [UPPER BOUND(ID), 0 ms] (44) CpxTypedWeightedCompleteTrs (45) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (48) CdtProblem (49) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CdtProblem (51) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CdtProblem (53) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CdtProblem (55) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CdtProblem (59) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CdtProblem (61) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CdtProblem (63) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CdtProblem (67) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CdtProblem (73) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CdtProblem (75) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (76) CdtProblem (77) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CdtProblem (79) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CdtProblem ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a Types: f :: i:a -> i:a -> i:a i :: i:a -> i:a g :: i:a -> i:a a :: i:a hole_i:a1_0 :: i:a gen_i:a2_0 :: Nat -> i:a ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f ---------------------------------------- (6) Obligation: TRS: Rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a Types: f :: i:a -> i:a -> i:a i :: i:a -> i:a g :: i:a -> i:a a :: i:a hole_i:a1_0 :: i:a gen_i:a2_0 :: Nat -> i:a Generator Equations: gen_i:a2_0(0) <=> a gen_i:a2_0(+(x, 1)) <=> i(gen_i:a2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (11) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (12) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(c_g(x))) -> a The (relative) TRS S consists of the following rules: g(x0) -> c_g(x0) Rewrite Strategy: FULL ---------------------------------------- (13) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(c_g(x))) -> a The (relative) TRS S consists of the following rules: g(x0) -> c_g(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] g(x0) -> c_g(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] g(x0) -> c_g(x0) [0] The TRS has the following type information: f :: i:c_g:a -> i:c_g:a -> i:c_g:a i :: i:c_g:a -> i:c_g:a g :: i:c_g:a -> i:c_g:a c_g :: i:c_g:a -> i:c_g:a a :: i:c_g:a Rewrite Strategy: INNERMOST ---------------------------------------- (19) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_2 (c) The following functions are completely defined: g_1 Due to the following rules being added: g(v0) -> a [0] And the following fresh constants: none ---------------------------------------- (20) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] g(x0) -> c_g(x0) [0] g(v0) -> a [0] The TRS has the following type information: f :: i:c_g:a -> i:c_g:a -> i:c_g:a i :: i:c_g:a -> i:c_g:a g :: i:c_g:a -> i:c_g:a c_g :: i:c_g:a -> i:c_g:a a :: i:c_g:a Rewrite Strategy: INNERMOST ---------------------------------------- (21) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (22) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(i(x))) [2] f(x, x) -> f(i(x), g(c_g(x))) [1] f(x, x) -> f(i(x), g(a)) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] g(x0) -> c_g(x0) [0] g(v0) -> a [0] The TRS has the following type information: f :: i:c_g:a -> i:c_g:a -> i:c_g:a i :: i:c_g:a -> i:c_g:a g :: i:c_g:a -> i:c_g:a c_g :: i:c_g:a -> i:c_g:a a :: i:c_g:a Rewrite Strategy: INNERMOST ---------------------------------------- (23) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> f(x, x) :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, g(0)) :|: z' = x, x >= 0, z = x f(z, z') -{ 2 }-> f(1 + x, g(1 + x)) :|: z' = x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, g(1 + x)) :|: z' = x, x >= 0, z = x f(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 1 + (1 + x) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (25) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> f(x, x) :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 2 }-> f(1 + x, 0) :|: z' = x, x >= 0, z = x, v0 >= 0, 1 + x = v0 f(z, z') -{ 1 }-> f(1 + x, 0) :|: z' = x, x >= 0, z = x, v0 >= 0, 1 + x = v0 f(z, z') -{ 1 }-> f(1 + x, 0) :|: z' = x, x >= 0, z = x, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + x, 1 + x') :|: z' = x, x >= 0, z = x, x' >= 0, 1 + x = x' f(z, z') -{ 2 }-> f(1 + x, 1 + x') :|: z' = x, x >= 0, z = x, x' >= 0, 1 + x = x' f(z, z') -{ 2 }-> f(1 + x, 1 + x') :|: z' = x, x >= 0, z = x, x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + x, 1 + x0) :|: z' = x, x >= 0, z = x, 1 + x = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + x, 1 + x0) :|: z' = x, x >= 0, z = x, 1 + x = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + x, 1 + x0) :|: z' = x, x >= 0, z = x, 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 1 + (1 + x) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (27) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 ---------------------------------------- (29) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { f } ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f} ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f} ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] f: runtime: ?, size: INF ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [1 + z] f: runtime: INF, size: INF ---------------------------------------- (43) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: g(v0) -> null_g [0] And the following fresh constants: null_g ---------------------------------------- (44) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] g(x0) -> c_g(x0) [0] g(v0) -> null_g [0] The TRS has the following type information: f :: i:c_g:a:null_g -> i:c_g:a:null_g -> i:c_g:a:null_g i :: i:c_g:a:null_g -> i:c_g:a:null_g g :: i:c_g:a:null_g -> i:c_g:a:null_g c_g :: i:c_g:a:null_g -> i:c_g:a:null_g a :: i:c_g:a:null_g null_g :: i:c_g:a:null_g Rewrite Strategy: INNERMOST ---------------------------------------- (45) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 null_g => 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> f(x, x) :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, g(g(x))) :|: z' = x, x >= 0, z = x f(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 1 + (1 + x) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (47) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (48) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: G(z0) -> c G(z0) -> c1 F(z0, z0) -> c2(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c3 F(z0, i(z0)) -> c4(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c5 S tuples: G(z0) -> c1 F(z0, z0) -> c2(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c3 F(z0, i(z0)) -> c4(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c5 K tuples:none Defined Rule Symbols: f_2, g_1 Defined Pair Symbols: G_1, F_2 Compound Symbols: c, c1, c2_3, c3, c4_1, c5 ---------------------------------------- (49) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: F(z0, z1) -> c3 G(z0) -> c1 G(z0) -> c F(i(z0), i(c_g(z0))) -> c5 ---------------------------------------- (50) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: F(z0, z0) -> c2(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, i(z0)) -> c4(F(z0, z0)) S tuples: F(z0, z0) -> c2(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, i(z0)) -> c4(F(z0, z0)) K tuples:none Defined Rule Symbols: f_2, g_1 Defined Pair Symbols: F_2 Compound Symbols: c2_3, c4_1 ---------------------------------------- (51) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (52) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(g(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(g(z0)))) K tuples:none Defined Rule Symbols: f_2, g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (53) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(g(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(g(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (55) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, z0) -> c2(F(i(z0), g(g(z0)))) by F(x0, x0) -> c2(F(i(x0), c_g(g(x0)))) F(x0, x0) -> c2(F(i(x0), i(g(x0)))) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(x0, x0) -> c2(F(i(x0), c_g(g(x0)))) F(x0, x0) -> c2(F(i(x0), i(g(x0)))) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(x0, x0) -> c2(F(i(x0), c_g(g(x0)))) F(x0, x0) -> c2(F(i(x0), i(g(x0)))) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (57) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(x0, x0) -> c2(F(i(x0), c_g(g(x0)))) ---------------------------------------- (58) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(x0, x0) -> c2(F(i(x0), i(g(x0)))) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(x0, x0) -> c2(F(i(x0), i(g(x0)))) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (59) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(x0, x0) -> c2(F(i(x0), i(g(x0)))) by F(z0, z0) -> c2(F(i(z0), i(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) ---------------------------------------- (60) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (61) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(z0, z0) -> c2(F(i(z0), i(c_g(z0)))) ---------------------------------------- (62) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (63) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, z0) -> c2(F(i(z0), g(c_g(z0)))) by F(x0, x0) -> c2(F(i(x0), c_g(c_g(x0)))) F(x0, x0) -> c2(F(i(x0), i(c_g(x0)))) ---------------------------------------- (64) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) F(x0, x0) -> c2(F(i(x0), c_g(c_g(x0)))) F(x0, x0) -> c2(F(i(x0), i(c_g(x0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) F(x0, x0) -> c2(F(i(x0), c_g(c_g(x0)))) F(x0, x0) -> c2(F(i(x0), i(c_g(x0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (65) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: F(x0, x0) -> c2(F(i(x0), i(c_g(x0)))) F(x0, x0) -> c2(F(i(x0), c_g(c_g(x0)))) ---------------------------------------- (66) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), g(i(z0)))) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (67) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, z0) -> c2(F(i(z0), g(i(z0)))) by F(x0, x0) -> c2(F(i(x0), c_g(i(x0)))) F(x0, x0) -> c2(F(i(x0), i(i(x0)))) ---------------------------------------- (68) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) F(x0, x0) -> c2(F(i(x0), c_g(i(x0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) F(x0, x0) -> c2(F(i(x0), c_g(i(x0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (69) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(x0, x0) -> c2(F(i(x0), c_g(i(x0)))) ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) K tuples:none Defined Rule Symbols: g_1 Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (71) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: g(z0) -> c_g(z0) g(z0) -> i(z0) ---------------------------------------- (72) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) S tuples: F(z0, i(z0)) -> c4(F(z0, z0)) F(z0, z0) -> c2(F(i(z0), i(i(z0)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (73) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(z0, i(z0)) -> c4(F(z0, z0)) by F(i(x0), i(i(x0))) -> c4(F(i(x0), i(x0))) ---------------------------------------- (74) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(z0, z0) -> c2(F(i(z0), i(i(z0)))) F(i(x0), i(i(x0))) -> c4(F(i(x0), i(x0))) S tuples: F(z0, z0) -> c2(F(i(z0), i(i(z0)))) F(i(x0), i(i(x0))) -> c4(F(i(x0), i(x0))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c4_1 ---------------------------------------- (75) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(z0, z0) -> c2(F(i(z0), i(i(z0)))) by F(i(x0), i(x0)) -> c2(F(i(i(x0)), i(i(i(x0))))) ---------------------------------------- (76) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(i(x0), i(i(x0))) -> c4(F(i(x0), i(x0))) F(i(x0), i(x0)) -> c2(F(i(i(x0)), i(i(i(x0))))) S tuples: F(i(x0), i(i(x0))) -> c4(F(i(x0), i(x0))) F(i(x0), i(x0)) -> c2(F(i(i(x0)), i(i(i(x0))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1 ---------------------------------------- (77) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(i(x0), i(i(x0))) -> c4(F(i(x0), i(x0))) by F(i(i(x0)), i(i(i(x0)))) -> c4(F(i(i(x0)), i(i(x0)))) ---------------------------------------- (78) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(i(x0), i(x0)) -> c2(F(i(i(x0)), i(i(i(x0))))) F(i(i(x0)), i(i(i(x0)))) -> c4(F(i(i(x0)), i(i(x0)))) S tuples: F(i(x0), i(x0)) -> c2(F(i(i(x0)), i(i(i(x0))))) F(i(i(x0)), i(i(i(x0)))) -> c4(F(i(i(x0)), i(i(x0)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c4_1 ---------------------------------------- (79) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(i(x0), i(x0)) -> c2(F(i(i(x0)), i(i(i(x0))))) by F(i(i(x0)), i(i(x0))) -> c2(F(i(i(i(x0))), i(i(i(i(x0)))))) ---------------------------------------- (80) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(i(i(x0)), i(i(i(x0)))) -> c4(F(i(i(x0)), i(i(x0)))) F(i(i(x0)), i(i(x0))) -> c2(F(i(i(i(x0))), i(i(i(i(x0)))))) S tuples: F(i(i(x0)), i(i(i(x0)))) -> c4(F(i(i(x0)), i(i(x0)))) F(i(i(x0)), i(i(x0))) -> c2(F(i(i(i(x0))), i(i(i(i(x0)))))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c4_1, c2_1