/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 573 ms] (8) proven lower bound (9) LowerBoundPropagationProof [FINISHED, 0 ms] (10) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, a(b(y))) -> f(a(b(b(x))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, a(b(y))) -> f(a(b(b(x))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(x, a(b(y))) -> f(a(b(b(x))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) Types: f :: b:a -> b:a -> f a :: b:a -> b:a b :: b:a -> b:a hole_f1_0 :: f hole_b:a2_0 :: b:a gen_b:a3_0 :: Nat -> b:a ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f ---------------------------------------- (6) Obligation: TRS: Rules: f(x, a(b(y))) -> f(a(b(b(x))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) Types: f :: b:a -> b:a -> f a :: b:a -> b:a b :: b:a -> b:a hole_f1_0 :: f hole_b:a2_0 :: b:a gen_b:a3_0 :: Nat -> b:a Generator Equations: gen_b:a3_0(0) <=> hole_b:a2_0 gen_b:a3_0(+(x, 1)) <=> a(gen_b:a3_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_b:a3_0(+(1, n5_0)), gen_b:a3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_b:a3_0(+(1, 0)), gen_b:a3_0(b)) Induction Step: f(gen_b:a3_0(+(1, +(n5_0, 1))), gen_b:a3_0(b)) ->_R^Omega(1) f(gen_b:a3_0(+(1, n5_0)), a(gen_b:a3_0(b))) ->_IH *4_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(x, a(b(y))) -> f(a(b(b(x))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) Types: f :: b:a -> b:a -> f a :: b:a -> b:a b :: b:a -> b:a hole_f1_0 :: f hole_b:a2_0 :: b:a gen_b:a3_0 :: Nat -> b:a Generator Equations: gen_b:a3_0(0) <=> hole_b:a2_0 gen_b:a3_0(+(x, 1)) <=> a(gen_b:a3_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (9) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (10) BOUNDS(n^1, INF)