/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 385 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, a(b(c(y)))) -> f(b(c(a(b(x)))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) f(c(x), y) -> f(x, c(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, a(b(c(y)))) -> f(b(c(a(b(x)))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) f(c(x), y) -> f(x, c(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: a0(0) -> 0 b0(0) -> 0 c0(0) -> 0 f0(0, 0) -> 1 b1(0) -> 5 a1(5) -> 4 c1(4) -> 3 b1(3) -> 2 f1(2, 0) -> 1 a1(0) -> 6 f1(0, 6) -> 1 b1(0) -> 7 f1(0, 7) -> 1 c1(0) -> 8 f1(0, 8) -> 1 b1(2) -> 5 a1(6) -> 6 a1(7) -> 6 a1(8) -> 6 b1(6) -> 7 b1(7) -> 7 b1(8) -> 7 b2(0) -> 9 f2(3, 9) -> 1 c1(6) -> 8 c1(7) -> 8 c1(8) -> 8 b2(0) -> 13 a2(13) -> 12 c2(12) -> 11 b2(11) -> 10 f2(10, 0) -> 1 f2(10, 6) -> 1 f2(10, 7) -> 1 f2(10, 8) -> 1 c2(9) -> 14 f2(4, 14) -> 1 b1(10) -> 5 b2(10) -> 13 a2(14) -> 15 f2(5, 15) -> 1 b3(0) -> 16 f3(11, 16) -> 1 b3(6) -> 16 b3(7) -> 16 b3(8) -> 16 b2(15) -> 9 f2(0, 9) -> 1 f2(2, 9) -> 1 f2(10, 9) -> 1 c3(16) -> 17 f3(12, 17) -> 1 a1(9) -> 6 b1(9) -> 7 b2(9) -> 9 b3(9) -> 16 c1(9) -> 8 a3(17) -> 18 f3(13, 18) -> 1 b3(18) -> 16 f3(0, 16) -> 1 f3(10, 16) -> 1 a1(16) -> 6 b1(16) -> 7 b3(16) -> 16 c1(16) -> 8 f2(10, 16) -> 1 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, a(b(c(y)))) -> f(b(c(a(b(x)))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) f(c(x), y) -> f(x, c(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(c(x), y) ->^+ f(x, c(y)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / c(x)]. The result substitution is [y / c(y)]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, a(b(c(y)))) -> f(b(c(a(b(x)))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) f(c(x), y) -> f(x, c(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, a(b(c(y)))) -> f(b(c(a(b(x)))), y) f(a(x), y) -> f(x, a(y)) f(b(x), y) -> f(x, b(y)) f(c(x), y) -> f(x, c(y)) S is empty. Rewrite Strategy: FULL