/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 529 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) f(b(x), b(y)) -> b(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(b(x), b(y)) -> b(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(b(x), b(y)) -> b(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: b0(0) -> 0 f0(0, 0) -> 1 f1(0, 0) -> 2 b1(2) -> 1 b1(2) -> 2 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) f(b(x), b(y)) -> b(f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) f(b(x), b(y)) -> b(f(x, y)) Types: a :: b -> b f :: b -> b -> b b :: b -> b hole_b1_0 :: b gen_b2_0 :: Nat -> b ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, f They will be analysed ascendingly in the following order: a = f ---------------------------------------- (12) Obligation: TRS: Rules: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) f(b(x), b(y)) -> b(f(x, y)) Types: a :: b -> b f :: b -> b -> b b :: b -> b hole_b1_0 :: b gen_b2_0 :: Nat -> b Generator Equations: gen_b2_0(0) <=> hole_b1_0 gen_b2_0(+(x, 1)) <=> b(gen_b2_0(x)) The following defined symbols remain to be analysed: f, a They will be analysed ascendingly in the following order: a = f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_b2_0(+(1, 0)), gen_b2_0(+(1, 0))) Induction Step: f(gen_b2_0(+(1, +(n4_0, 1))), gen_b2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) b(f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0)))) ->_IH b(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) f(b(x), b(y)) -> b(f(x, y)) Types: a :: b -> b f :: b -> b -> b b :: b -> b hole_b1_0 :: b gen_b2_0 :: Nat -> b Generator Equations: gen_b2_0(0) <=> hole_b1_0 gen_b2_0(+(x, 1)) <=> b(gen_b2_0(x)) The following defined symbols remain to be analysed: f, a They will be analysed ascendingly in the following order: a = f ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y)))))) f(a(x), a(y)) -> a(f(x, y)) f(b(x), b(y)) -> b(f(x, y)) Types: a :: b -> b f :: b -> b -> b b :: b -> b hole_b1_0 :: b gen_b2_0 :: Nat -> b Lemmas: f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_b2_0(0) <=> hole_b1_0 gen_b2_0(+(x, 1)) <=> b(gen_b2_0(x)) The following defined symbols remain to be analysed: a They will be analysed ascendingly in the following order: a = f