/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 428 ms] (8) proven lower bound (9) LowerBoundPropagationProof [FINISHED, 0 ms] (10) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(0, 1, x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(0', 1', x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(0', 1', x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) Types: f :: 0':1':g -> 0':1':g -> 0':1':g -> 0':1':g 0' :: 0':1':g 1' :: 0':1':g g :: 0':1':g -> 0':1':g hole_0':1':g1_0 :: 0':1':g gen_0':1':g2_0 :: Nat -> 0':1':g ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f ---------------------------------------- (6) Obligation: TRS: Rules: f(0', 1', x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) Types: f :: 0':1':g -> 0':1':g -> 0':1':g -> 0':1':g 0' :: 0':1':g 1' :: 0':1':g g :: 0':1':g -> 0':1':g hole_0':1':g1_0 :: 0':1':g gen_0':1':g2_0 :: Nat -> 0':1':g Generator Equations: gen_0':1':g2_0(0) <=> 1' gen_0':1':g2_0(+(x, 1)) <=> g(gen_0':1':g2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_0':1':g2_0(+(1, 0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) Induction Step: f(gen_0':1':g2_0(+(1, +(n4_0, 1))), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) ->_R^Omega(1) g(f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c))) ->_IH g(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(0', 1', x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) Types: f :: 0':1':g -> 0':1':g -> 0':1':g -> 0':1':g 0' :: 0':1':g 1' :: 0':1':g g :: 0':1':g -> 0':1':g hole_0':1':g1_0 :: 0':1':g gen_0':1':g2_0 :: Nat -> 0':1':g Generator Equations: gen_0':1':g2_0(0) <=> 1' gen_0':1':g2_0(+(x, 1)) <=> g(gen_0':1':g2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (9) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (10) BOUNDS(n^1, INF)