/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0 mod(x, 0) -> 0 mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0, y) -> false gt(s(x), 0) -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0) -> false lt(0, s(x)) -> true lt(s(x), s(y)) -> lt(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(0', y) -> 0' minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0' mod(x, 0') -> 0' mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0') -> false lt(0', s(x)) -> true lt(s(x), s(y)) -> lt(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(0', y) -> 0' minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0' mod(x, 0') -> 0' mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0') -> false lt(0', s(x)) -> true lt(s(x), s(y)) -> lt(x, y) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s gt :: 0':s -> 0':s -> true:false true :: true:false false :: true:false mod :: 0':s -> 0':s -> 0':s if1 :: true:false -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, gt, mod, lt They will be analysed ascendingly in the following order: gt < minus minus < mod lt < mod ---------------------------------------- (6) Obligation: TRS: Rules: minus(0', y) -> 0' minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0' mod(x, 0') -> 0' mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0') -> false lt(0', s(x)) -> true lt(s(x), s(y)) -> lt(x, y) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s gt :: 0':s -> 0':s -> true:false true :: true:false false :: true:false mod :: 0':s -> 0':s -> 0':s if1 :: true:false -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: gt, minus, mod, lt They will be analysed ascendingly in the following order: gt < minus minus < mod lt < mod ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: gt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(0', y) -> 0' minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0' mod(x, 0') -> 0' mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0') -> false lt(0', s(x)) -> true lt(s(x), s(y)) -> lt(x, y) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s gt :: 0':s -> 0':s -> true:false true :: true:false false :: true:false mod :: 0':s -> 0':s -> 0':s if1 :: true:false -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: gt, minus, mod, lt They will be analysed ascendingly in the following order: gt < minus minus < mod lt < mod ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(0', y) -> 0' minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0' mod(x, 0') -> 0' mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0') -> false lt(0', s(x)) -> true lt(s(x), s(y)) -> lt(x, y) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s gt :: 0':s -> 0':s -> true:false true :: true:false false :: true:false mod :: 0':s -> 0':s -> 0':s if1 :: true:false -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, mod, lt They will be analysed ascendingly in the following order: minus < mod lt < mod ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s3_0(n359_0), gen_0':s3_0(n359_0)) -> false, rt in Omega(1 + n359_0) Induction Base: lt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) false Induction Step: lt(gen_0':s3_0(+(n359_0, 1)), gen_0':s3_0(+(n359_0, 1))) ->_R^Omega(1) lt(gen_0':s3_0(n359_0), gen_0':s3_0(n359_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(0', y) -> 0' minus(s(x), y) -> if(gt(s(x), y), x, y) if(true, x, y) -> s(minus(x, y)) if(false, x, y) -> 0' mod(x, 0') -> 0' mod(x, s(y)) -> if1(lt(x, s(y)), x, s(y)) if1(true, x, y) -> x if1(false, x, y) -> mod(minus(x, y), y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) lt(x, 0') -> false lt(0', s(x)) -> true lt(s(x), s(y)) -> lt(x, y) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s gt :: 0':s -> 0':s -> true:false true :: true:false false :: true:false mod :: 0':s -> 0':s -> 0':s if1 :: true:false -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) lt(gen_0':s3_0(n359_0), gen_0':s3_0(n359_0)) -> false, rt in Omega(1 + n359_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: mod