/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 238 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 3 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 88 ms] (18) proven lower bound (19) LowerBoundPropagationProof [FINISHED, 0 ms] (20) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: max, ge, del, eq, sort They will be analysed ascendingly in the following order: ge < max max < sort eq < del del < sort ---------------------------------------- (6) Obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: ge, max, del, eq, sort They will be analysed ascendingly in the following order: ge < max max < sort eq < del del < sort ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: ge(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: ge, max, del, eq, sort They will be analysed ascendingly in the following order: ge < max max < sort eq < del del < sort ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: max, del, eq, sort They will be analysed ascendingly in the following order: max < sort eq < del del < sort ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: max(gen_nil:cons5_0(+(1, n323_0))) -> gen_0':s4_0(0), rt in Omega(1 + n323_0) Induction Base: max(gen_nil:cons5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: max(gen_nil:cons5_0(+(1, +(n323_0, 1)))) ->_R^Omega(1) if1(ge(0', 0'), 0', 0', gen_nil:cons5_0(n323_0)) ->_L^Omega(1) if1(true, 0', 0', gen_nil:cons5_0(n323_0)) ->_R^Omega(1) max(cons(0', gen_nil:cons5_0(n323_0))) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) max(gen_nil:cons5_0(+(1, n323_0))) -> gen_0':s4_0(0), rt in Omega(1 + n323_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: eq, del, sort They will be analysed ascendingly in the following order: eq < del del < sort ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n772_0), gen_0':s4_0(n772_0)) -> true, rt in Omega(1 + n772_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n772_0, 1)), gen_0':s4_0(+(n772_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n772_0), gen_0':s4_0(n772_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) max(gen_nil:cons5_0(+(1, n323_0))) -> gen_0':s4_0(0), rt in Omega(1 + n323_0) eq(gen_0':s4_0(n772_0), gen_0':s4_0(n772_0)) -> true, rt in Omega(1 + n772_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: del, sort They will be analysed ascendingly in the following order: del < sort ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sort(gen_nil:cons5_0(n1475_0)) -> gen_nil:cons5_0(0), rt in Omega(1 + n1475_0 + n1475_0^2) Induction Base: sort(gen_nil:cons5_0(0)) ->_R^Omega(1) if3(empty(gen_nil:cons5_0(0)), gen_nil:cons5_0(0)) ->_R^Omega(1) if3(true, gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: sort(gen_nil:cons5_0(+(n1475_0, 1))) ->_R^Omega(1) if3(empty(gen_nil:cons5_0(+(n1475_0, 1))), gen_nil:cons5_0(+(n1475_0, 1))) ->_R^Omega(1) if3(false, gen_nil:cons5_0(+(1, n1475_0))) ->_R^Omega(1) sort(del(max(gen_nil:cons5_0(+(1, n1475_0))), gen_nil:cons5_0(+(1, n1475_0)))) ->_L^Omega(1 + n1475_0) sort(del(gen_0':s4_0(0), gen_nil:cons5_0(+(1, n1475_0)))) ->_R^Omega(1) sort(if2(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), 0', gen_nil:cons5_0(n1475_0))) ->_L^Omega(1) sort(if2(true, gen_0':s4_0(0), 0', gen_nil:cons5_0(n1475_0))) ->_R^Omega(1) sort(gen_nil:cons5_0(n1475_0)) ->_IH gen_nil:cons5_0(0) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: max(nil) -> 0' max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Types: max :: nil:cons -> 0':s nil :: nil:cons 0' :: 0':s cons :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s ge :: 0':s -> 0':s -> true:false true :: true:false false :: true:false del :: 0':s -> nil:cons -> nil:cons if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s sort :: nil:cons -> nil:cons if3 :: true:false -> nil:cons -> nil:cons empty :: nil:cons -> true:false hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons hole_true:false3_0 :: true:false gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) max(gen_nil:cons5_0(+(1, n323_0))) -> gen_0':s4_0(0), rt in Omega(1 + n323_0) eq(gen_0':s4_0(n772_0), gen_0':s4_0(n772_0)) -> true, rt in Omega(1 + n772_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: sort ---------------------------------------- (19) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (20) BOUNDS(n^2, INF)