/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 289 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 59 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 21 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 28 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0 min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, eq, minsort, min, rm They will be analysed ascendingly in the following order: le < min eq < rm min < minsort rm < minsort ---------------------------------------- (6) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: le, eq, minsort, min, rm They will be analysed ascendingly in the following order: le < min eq < rm min < minsort rm < minsort ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: le(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: le, eq, minsort, min, rm They will be analysed ascendingly in the following order: le < min eq < rm min < minsort rm < minsort ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: eq, minsort, min, rm They will be analysed ascendingly in the following order: eq < rm min < minsort rm < minsort ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n306_0), gen_0':s4_0(n306_0)) -> true, rt in Omega(1 + n306_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n306_0, 1)), gen_0':s4_0(+(n306_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n306_0), gen_0':s4_0(n306_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) eq(gen_0':s4_0(n306_0), gen_0':s4_0(n306_0)) -> true, rt in Omega(1 + n306_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: min, minsort, rm They will be analysed ascendingly in the following order: min < minsort rm < minsort ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: min(gen_nil:cons5_0(+(1, n823_0))) -> gen_0':s4_0(0), rt in Omega(1 + n823_0) Induction Base: min(gen_nil:cons5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: min(gen_nil:cons5_0(+(1, +(n823_0, 1)))) ->_R^Omega(1) if1(le(0', 0'), 0', 0', gen_nil:cons5_0(n823_0)) ->_L^Omega(1) if1(true, 0', 0', gen_nil:cons5_0(n823_0)) ->_R^Omega(1) min(cons(0', gen_nil:cons5_0(n823_0))) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) eq(gen_0':s4_0(n306_0), gen_0':s4_0(n306_0)) -> true, rt in Omega(1 + n306_0) min(gen_nil:cons5_0(+(1, n823_0))) -> gen_0':s4_0(0), rt in Omega(1 + n823_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: rm, minsort They will be analysed ascendingly in the following order: rm < minsort ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rm(gen_0':s4_0(0), gen_nil:cons5_0(n1254_0)) -> gen_nil:cons5_0(0), rt in Omega(1 + n1254_0) Induction Base: rm(gen_0':s4_0(0), gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: rm(gen_0':s4_0(0), gen_nil:cons5_0(+(n1254_0, 1))) ->_R^Omega(1) if2(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), 0', gen_nil:cons5_0(n1254_0)) ->_L^Omega(1) if2(true, gen_0':s4_0(0), 0', gen_nil:cons5_0(n1254_0)) ->_R^Omega(1) rm(gen_0':s4_0(0), gen_nil:cons5_0(n1254_0)) ->_IH gen_nil:cons5_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) eq(0', 0') -> true eq(0', s(y)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) minsort(nil) -> nil minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) min(nil) -> 0' min(cons(x, nil)) -> x min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) if1(true, x, y, xs) -> min(cons(x, xs)) if1(false, x, y, xs) -> min(cons(y, xs)) rm(x, nil) -> nil rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> rm(x, xs) if2(false, x, y, xs) -> cons(y, rm(x, xs)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false eq :: 0':s -> 0':s -> true:false minsort :: nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons min :: nil:cons -> 0':s rm :: 0':s -> nil:cons -> nil:cons if1 :: true:false -> 0':s -> 0':s -> nil:cons -> 0':s if2 :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) eq(gen_0':s4_0(n306_0), gen_0':s4_0(n306_0)) -> true, rt in Omega(1 + n306_0) min(gen_nil:cons5_0(+(1, n823_0))) -> gen_0':s4_0(0), rt in Omega(1 + n823_0) rm(gen_0':s4_0(0), gen_nil:cons5_0(n1254_0)) -> gen_nil:cons5_0(0), rt in Omega(1 + n1254_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: minsort