/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 264 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 59 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0 p(0) -> 0 p(s(x)) -> x ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0, y) -> false gt(s(x), 0) -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0), x, y) if1(false, x, y) -> 0 if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0' p(0') -> 0' p(s(x)) -> x ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0'), x, y) if1(false, x, y) -> 0' if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0' S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0' p(0') -> 0' p(s(x)) -> x ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0'), x, y) if1(false, x, y) -> 0' if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0' Types: minus :: s:0' -> s:0' -> s:0' if :: true:false -> s:0' -> s:0' -> s:0' gt :: s:0' -> s:0' -> true:false true :: true:false s :: s:0' -> s:0' p :: s:0' -> s:0' false :: true:false 0' :: s:0' ge :: s:0' -> s:0' -> true:false div :: s:0' -> s:0' -> s:0' if1 :: true:false -> s:0' -> s:0' -> s:0' if2 :: true:false -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, gt, ge, div They will be analysed ascendingly in the following order: gt < minus minus < div gt < div ge < div ---------------------------------------- (6) Obligation: TRS: Rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0' p(0') -> 0' p(s(x)) -> x ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0'), x, y) if1(false, x, y) -> 0' if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0' Types: minus :: s:0' -> s:0' -> s:0' if :: true:false -> s:0' -> s:0' -> s:0' gt :: s:0' -> s:0' -> true:false true :: true:false s :: s:0' -> s:0' p :: s:0' -> s:0' false :: true:false 0' :: s:0' ge :: s:0' -> s:0' -> true:false div :: s:0' -> s:0' -> s:0' if1 :: true:false -> s:0' -> s:0' -> s:0' if2 :: true:false -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: gt, minus, ge, div They will be analysed ascendingly in the following order: gt < minus minus < div gt < div ge < div ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: gt(gen_s:0'3_0(0), gen_s:0'3_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) ->_R^Omega(1) gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0' p(0') -> 0' p(s(x)) -> x ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0'), x, y) if1(false, x, y) -> 0' if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0' Types: minus :: s:0' -> s:0' -> s:0' if :: true:false -> s:0' -> s:0' -> s:0' gt :: s:0' -> s:0' -> true:false true :: true:false s :: s:0' -> s:0' p :: s:0' -> s:0' false :: true:false 0' :: s:0' ge :: s:0' -> s:0' -> true:false div :: s:0' -> s:0' -> s:0' if1 :: true:false -> s:0' -> s:0' -> s:0' if2 :: true:false -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: gt, minus, ge, div They will be analysed ascendingly in the following order: gt < minus minus < div gt < div ge < div ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0' p(0') -> 0' p(s(x)) -> x ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0'), x, y) if1(false, x, y) -> 0' if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0' Types: minus :: s:0' -> s:0' -> s:0' if :: true:false -> s:0' -> s:0' -> s:0' gt :: s:0' -> s:0' -> true:false true :: true:false s :: s:0' -> s:0' p :: s:0' -> s:0' false :: true:false 0' :: s:0' ge :: s:0' -> s:0' -> true:false div :: s:0' -> s:0' -> s:0' if1 :: true:false -> s:0' -> s:0' -> s:0' if2 :: true:false -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: minus, ge, div They will be analysed ascendingly in the following order: minus < div ge < div ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_s:0'3_0(n335_0), gen_s:0'3_0(n335_0)) -> true, rt in Omega(1 + n335_0) Induction Base: ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_s:0'3_0(+(n335_0, 1)), gen_s:0'3_0(+(n335_0, 1))) ->_R^Omega(1) ge(gen_s:0'3_0(n335_0), gen_s:0'3_0(n335_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(x, y) -> if(gt(x, y), x, y) if(true, x, y) -> s(minus(p(x), y)) if(false, x, y) -> 0' p(0') -> 0' p(s(x)) -> x ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) gt(0', y) -> false gt(s(x), 0') -> true gt(s(x), s(y)) -> gt(x, y) div(x, y) -> if1(ge(x, y), x, y) if1(true, x, y) -> if2(gt(y, 0'), x, y) if1(false, x, y) -> 0' if2(true, x, y) -> s(div(minus(x, y), y)) if2(false, x, y) -> 0' Types: minus :: s:0' -> s:0' -> s:0' if :: true:false -> s:0' -> s:0' -> s:0' gt :: s:0' -> s:0' -> true:false true :: true:false s :: s:0' -> s:0' p :: s:0' -> s:0' false :: true:false 0' :: s:0' ge :: s:0' -> s:0' -> true:false div :: s:0' -> s:0' -> s:0' if1 :: true:false -> s:0' -> s:0' -> s:0' if2 :: true:false -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> false, rt in Omega(1 + n5_0) ge(gen_s:0'3_0(n335_0), gen_s:0'3_0(n335_0)) -> true, rt in Omega(1 + n335_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: div