/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 935 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 383 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 419 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 104 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 636 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 206 ms] (36) CpxRNTS (37) FinalProof [FINISHED, 0 ms] (38) BOUNDS(1, n^2) (39) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 0 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 262 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 52 ms] (52) BEST (53) proven lower bound (54) LowerBoundPropagationProof [FINISHED, 0 ms] (55) BOUNDS(n^2, INF) (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (58) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 1th argument of plus: plus, times Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: div(div(x, y), z) -> div(x, times(y, z)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: times(s(x), []) div(x, []) The defined contexts are: plus(x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: div_2 quot_3 (c) The following functions are completely defined: times_2 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(0), y) -> plus(y, 0) [2] times(s(s(0)), y) -> plus(y, y) [2] times(s(s(x')), y) -> plus(y, plus(y, times(x', y))) [2] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z times(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(y, y) :|: z' = 1 + (1 + 0), z'' = y, y >= 0 times(z', z'') -{ 2 }-> plus(y, plus(y, times(x', y))) :|: z' = 1 + (1 + x'), z'' = y, x' >= 0, y >= 0 times(z', z'') -{ 2 }-> plus(y, 0) :|: z'' = y, y >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { div, quot } { plus } { times } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {div,quot}, {plus}, {times} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {div,quot}, {plus}, {times} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {div,quot}, {plus}, {times} Previous analysis results are: div: runtime: ?, size: O(n^1) [z'] quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z' Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z' + z'' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z'*z'' + 4*z'' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: ?, size: O(n^2) [2*z'*z'' + 4*z''] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 4*z' + 2*z'*z'' + 2*z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s :|: s >= 0, s <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s1 :|: s1 >= 0, s1 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s'' :|: s'' >= 0, s'' <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] ---------------------------------------- (37) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (38) BOUNDS(1, n^2) ---------------------------------------- (39) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (40) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (42) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, div, quot They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (44) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) gen_0':s2_0(b) Induction Step: plus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) s(plus(gen_0':s2_0(n4_0), gen_0':s2_0(b))) ->_IH s(gen_0':s2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, div, quot They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n577_0, b)), rt in Omega(1 + b*n577_0 + n577_0) Induction Base: times(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s2_0(+(n577_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) plus(gen_0':s2_0(b), times(gen_0':s2_0(n577_0), gen_0':s2_0(b))) ->_IH plus(gen_0':s2_0(b), gen_0':s2_0(*(c578_0, b))) ->_L^Omega(1 + b) gen_0':s2_0(+(b, *(n577_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (52) Complex Obligation (BEST) ---------------------------------------- (53) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, div, quot They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (54) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (55) BOUNDS(n^2, INF) ---------------------------------------- (56) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n577_0, b)), rt in Omega(1 + b*n577_0 + n577_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: quot, div They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) -> gen_0':s2_0(0), rt in Omega(1 + n1370_0) Induction Base: quot(gen_0':s2_0(0), gen_0':s2_0(+(1, 0)), gen_0':s2_0(c)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s2_0(+(n1370_0, 1)), gen_0':s2_0(+(1, +(n1370_0, 1))), gen_0':s2_0(c)) ->_R^Omega(1) quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (58) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n577_0, b)), rt in Omega(1 + b*n577_0 + n577_0) quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) -> gen_0':s2_0(0), rt in Omega(1 + n1370_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: div They will be analysed ascendingly in the following order: div = quot