/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 800 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) Types: ack :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ack, f They will be analysed ascendingly in the following order: ack = f ---------------------------------------- (6) Obligation: TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) Types: ack :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: f, ack They will be analysed ascendingly in the following order: ack = f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1529_0))) -> *3_0, rt in Omega(n1529_0) Induction Base: ack(gen_0':s2_0(1), gen_0':s2_0(+(1, 0))) Induction Step: ack(gen_0':s2_0(1), gen_0':s2_0(+(1, +(n1529_0, 1)))) ->_R^Omega(1) ack(gen_0':s2_0(0), ack(s(gen_0':s2_0(0)), gen_0':s2_0(+(1, n1529_0)))) ->_IH ack(gen_0':s2_0(0), *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) Types: ack :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: ack They will be analysed ascendingly in the following order: ack = f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) Types: ack :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1529_0))) -> *3_0, rt in Omega(n1529_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: f They will be analysed ascendingly in the following order: ack = f