/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 27 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) mat(f(x), f(y)) -> f(mat(x, y)) chk(no(c)) -> active(c) mat(f(x), c) -> no(c) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) mat(f(x), f(y)) -> f(mat(x, y)) chk(no(c)) -> active(c) mat(f(x), c) -> no(c) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: mark0(0) -> 0 no0(0) -> 0 X0() -> 0 y0() -> 0 c0() -> 0 active0(0) -> 1 chk0(0) -> 2 mat0(0, 0) -> 3 f0(0) -> 4 tp0(0) -> 5 c1() -> 6 active1(6) -> 2 f1(0) -> 7 no1(7) -> 4 f1(0) -> 8 mark1(8) -> 4 X1() -> 14 f1(14) -> 13 f1(13) -> 12 f1(12) -> 12 f1(12) -> 11 mat1(11, 0) -> 10 chk1(10) -> 9 tp1(9) -> 5 c1() -> 15 no1(15) -> 10 no1(7) -> 7 no1(7) -> 8 mark1(8) -> 7 mark1(8) -> 8 c2() -> 16 active2(16) -> 9 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) mat(f(x), f(y)) -> f(mat(x, y)) chk(no(c)) -> active(c) mat(f(x), c) -> no(c) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(no(x)) ->^+ no(f(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / no(x)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) mat(f(x), f(y)) -> f(mat(x, y)) chk(no(c)) -> active(c) mat(f(x), c) -> no(c) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) mat(f(x), f(y)) -> f(mat(x, y)) chk(no(c)) -> active(c) mat(f(x), c) -> no(c) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) S is empty. Rewrite Strategy: FULL