/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 246 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 24 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 2328 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) times(0, y) -> 0 times(x, 0) -> 0 times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 fac(s(x)) -> times(fac(p(s(x))), s(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, p, fac They will be analysed ascendingly in the following order: plus < times times < fac p < fac ---------------------------------------- (6) Obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, p, fac They will be analysed ascendingly in the following order: plus < times times < fac p < fac ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: plus(gen_0':s2_0(a), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(a) Induction Step: plus(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) s(plus(gen_0':s2_0(a), gen_0':s2_0(n4_0))) ->_IH s(gen_0':s2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, p, fac They will be analysed ascendingly in the following order: plus < times times < fac p < fac ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, p, fac They will be analysed ascendingly in the following order: times < fac p < fac ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n475_0, b)), rt in Omega(1 + b*n475_0 + n475_0) Induction Base: times(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s2_0(+(n475_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) plus(times(gen_0':s2_0(n475_0), gen_0':s2_0(b)), gen_0':s2_0(b)) ->_IH plus(gen_0':s2_0(*(c476_0, b)), gen_0':s2_0(b)) ->_L^Omega(1 + b) gen_0':s2_0(+(b, *(n475_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, p, fac They will be analysed ascendingly in the following order: times < fac p < fac ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n475_0, b)), rt in Omega(1 + b*n475_0 + n475_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: p, fac They will be analysed ascendingly in the following order: p < fac ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s2_0(+(1, n1092_0))) -> gen_0':s2_0(n1092_0), rt in Omega(1 + n1092_0) Induction Base: p(gen_0':s2_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s2_0(+(1, +(n1092_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s2_0(n1092_0)))) ->_IH s(gen_0':s2_0(c1093_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) times(0', y) -> 0' times(x, 0') -> 0' times(s(x), y) -> plus(times(x, y), y) p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' fac(s(x)) -> times(fac(p(s(x))), s(x)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s fac :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n475_0, b)), rt in Omega(1 + b*n475_0 + n475_0) p(gen_0':s2_0(+(1, n1092_0))) -> gen_0':s2_0(n1092_0), rt in Omega(1 + n1092_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: fac ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fac(gen_0':s2_0(+(1, n1276_0))) -> *3_0, rt in Omega(n1276_0 + n1276_0^2) Induction Base: fac(gen_0':s2_0(+(1, 0))) Induction Step: fac(gen_0':s2_0(+(1, +(n1276_0, 1)))) ->_R^Omega(1) times(fac(p(s(gen_0':s2_0(+(1, n1276_0))))), s(gen_0':s2_0(+(1, n1276_0)))) ->_L^Omega(2 + n1276_0) times(fac(gen_0':s2_0(+(1, n1276_0))), s(gen_0':s2_0(+(1, n1276_0)))) ->_IH times(*3_0, s(gen_0':s2_0(+(1, n1276_0)))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (22) BOUNDS(1, INF)