/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 84 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 425 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: active, start, proper, top, f, check, match The following defined symbols can occur below the 0th argument of active: active, start, proper, top, f, check, match The following defined symbols can occur below the 0th argument of f: active, start, proper, top, f, check, match The following defined symbols can occur below the 0th argument of start: active, start, proper, top, f, check, match The following defined symbols can occur below the 0th argument of match: active, start, proper, top, f, check, match The following defined symbols can occur below the 0th argument of check: active, start, proper, top, f, check, match Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: match(f(x), f(y)) -> f(match(x, y)) proper(f(x)) -> f(proper(x)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(X, x) -> proper(x) proper(c) -> ok(c) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(X, x) -> proper(x) proper(c) -> ok(c) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: mark0(0) -> 0 c0() -> 0 X0() -> 0 ok0(0) -> 0 found0(0) -> 0 active0(0) -> 1 top0(0) -> 2 check0(0) -> 3 match0(0, 0) -> 4 proper0(0) -> 5 f0(0) -> 6 start0(0) -> 7 check1(0) -> 8 top1(8) -> 2 X1() -> 11 f1(11) -> 10 match1(10, 0) -> 9 start1(9) -> 3 proper1(0) -> 4 c1() -> 12 ok1(12) -> 5 f1(0) -> 13 ok1(13) -> 6 found1(0) -> 7 f1(0) -> 14 found1(14) -> 6 active1(0) -> 15 top1(15) -> 2 f1(0) -> 16 mark1(16) -> 6 c1() -> 18 mark1(18) -> 17 top1(17) -> 2 X2() -> 21 f2(21) -> 20 match2(20, 0) -> 19 start2(19) -> 8 ok1(12) -> 4 ok1(13) -> 13 ok1(13) -> 14 ok1(13) -> 16 found1(14) -> 13 found1(14) -> 14 found1(14) -> 16 mark1(16) -> 13 mark1(16) -> 14 mark1(16) -> 16 check2(18) -> 22 top2(22) -> 2 X3() -> 25 f3(25) -> 24 match3(24, 18) -> 23 start3(23) -> 22 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Types: active :: mark:c:X:ok:found -> mark:c:X:ok:found f :: mark:c:X:ok:found -> mark:c:X:ok:found mark :: mark:c:X:ok:found -> mark:c:X:ok:found top :: mark:c:X:ok:found -> top c :: mark:c:X:ok:found check :: mark:c:X:ok:found -> mark:c:X:ok:found start :: mark:c:X:ok:found -> mark:c:X:ok:found match :: mark:c:X:ok:found -> mark:c:X:ok:found -> mark:c:X:ok:found X :: mark:c:X:ok:found proper :: mark:c:X:ok:found -> mark:c:X:ok:found ok :: mark:c:X:ok:found -> mark:c:X:ok:found found :: mark:c:X:ok:found -> mark:c:X:ok:found hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found hole_top2_0 :: top gen_mark:c:X:ok:found3_0 :: Nat -> mark:c:X:ok:found ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: top, check, f, match, proper, active They will be analysed ascendingly in the following order: check < top active < top f < check match < check f < match f < proper f < active proper < match ---------------------------------------- (12) Obligation: TRS: Rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Types: active :: mark:c:X:ok:found -> mark:c:X:ok:found f :: mark:c:X:ok:found -> mark:c:X:ok:found mark :: mark:c:X:ok:found -> mark:c:X:ok:found top :: mark:c:X:ok:found -> top c :: mark:c:X:ok:found check :: mark:c:X:ok:found -> mark:c:X:ok:found start :: mark:c:X:ok:found -> mark:c:X:ok:found match :: mark:c:X:ok:found -> mark:c:X:ok:found -> mark:c:X:ok:found X :: mark:c:X:ok:found proper :: mark:c:X:ok:found -> mark:c:X:ok:found ok :: mark:c:X:ok:found -> mark:c:X:ok:found found :: mark:c:X:ok:found -> mark:c:X:ok:found hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found hole_top2_0 :: top gen_mark:c:X:ok:found3_0 :: Nat -> mark:c:X:ok:found Generator Equations: gen_mark:c:X:ok:found3_0(0) <=> c gen_mark:c:X:ok:found3_0(+(x, 1)) <=> mark(gen_mark:c:X:ok:found3_0(x)) The following defined symbols remain to be analysed: f, top, check, match, proper, active They will be analysed ascendingly in the following order: check < top active < top f < check match < check f < match f < proper f < active proper < match ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_mark:c:X:ok:found3_0(+(1, 0))) Induction Step: f(gen_mark:c:X:ok:found3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) mark(f(gen_mark:c:X:ok:found3_0(+(1, n5_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Types: active :: mark:c:X:ok:found -> mark:c:X:ok:found f :: mark:c:X:ok:found -> mark:c:X:ok:found mark :: mark:c:X:ok:found -> mark:c:X:ok:found top :: mark:c:X:ok:found -> top c :: mark:c:X:ok:found check :: mark:c:X:ok:found -> mark:c:X:ok:found start :: mark:c:X:ok:found -> mark:c:X:ok:found match :: mark:c:X:ok:found -> mark:c:X:ok:found -> mark:c:X:ok:found X :: mark:c:X:ok:found proper :: mark:c:X:ok:found -> mark:c:X:ok:found ok :: mark:c:X:ok:found -> mark:c:X:ok:found found :: mark:c:X:ok:found -> mark:c:X:ok:found hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found hole_top2_0 :: top gen_mark:c:X:ok:found3_0 :: Nat -> mark:c:X:ok:found Generator Equations: gen_mark:c:X:ok:found3_0(0) <=> c gen_mark:c:X:ok:found3_0(+(x, 1)) <=> mark(gen_mark:c:X:ok:found3_0(x)) The following defined symbols remain to be analysed: f, top, check, match, proper, active They will be analysed ascendingly in the following order: check < top active < top f < check match < check f < match f < proper f < active proper < match ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Types: active :: mark:c:X:ok:found -> mark:c:X:ok:found f :: mark:c:X:ok:found -> mark:c:X:ok:found mark :: mark:c:X:ok:found -> mark:c:X:ok:found top :: mark:c:X:ok:found -> top c :: mark:c:X:ok:found check :: mark:c:X:ok:found -> mark:c:X:ok:found start :: mark:c:X:ok:found -> mark:c:X:ok:found match :: mark:c:X:ok:found -> mark:c:X:ok:found -> mark:c:X:ok:found X :: mark:c:X:ok:found proper :: mark:c:X:ok:found -> mark:c:X:ok:found ok :: mark:c:X:ok:found -> mark:c:X:ok:found found :: mark:c:X:ok:found -> mark:c:X:ok:found hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found hole_top2_0 :: top gen_mark:c:X:ok:found3_0 :: Nat -> mark:c:X:ok:found Lemmas: f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_mark:c:X:ok:found3_0(0) <=> c gen_mark:c:X:ok:found3_0(+(x, 1)) <=> mark(gen_mark:c:X:ok:found3_0(x)) The following defined symbols remain to be analysed: proper, top, check, match, active They will be analysed ascendingly in the following order: check < top active < top match < check proper < match