/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 990 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 408 ms] (22) CpxRNTS (23) FinalProof [FINISHED, 0 ms] (24) BOUNDS(1, n^1) (25) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxTRS (27) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (28) typed CpxTrs (29) OrderProof [LOWER BOUND(ID), 0 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 371 ms] (32) BEST (33) proven lower bound (34) LowerBoundPropagationProof [FINISHED, 0 ms] (35) BOUNDS(n^1, INF) (36) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: div :: 0:s -> 0:s -> 0:s 0 :: 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: div_2 quot_3 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: div :: 0:s -> 0:s -> 0:s 0 :: 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] The TRS has the following type information: div :: 0:s -> 0:s -> 0:s 0 :: 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { div, quot } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {div,quot} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {div,quot} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: {div,quot} Previous analysis results are: div: runtime: ?, size: O(n^1) [z'] quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z' Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z' + z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (23) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (24) BOUNDS(1, n^1) ---------------------------------------- (25) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (26) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (27) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (28) Obligation: TRS: Rules: div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) Types: div :: 0':s -> 0':s -> 0':s 0' :: 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (29) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: div, quot They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (30) Obligation: TRS: Rules: div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) Types: div :: 0':s -> 0':s -> 0':s 0' :: 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: quot, div They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(c)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Induction Base: quot(gen_0':s2_0(0), gen_0':s2_0(+(1, 0)), gen_0':s2_0(c)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(1, +(n4_0, 1))), gen_0':s2_0(c)) ->_R^Omega(1) quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(c)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Complex Obligation (BEST) ---------------------------------------- (33) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) Types: div :: 0':s -> 0':s -> 0':s 0' :: 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: quot, div They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (34) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (35) BOUNDS(n^1, INF) ---------------------------------------- (36) Obligation: TRS: Rules: div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) Types: div :: 0':s -> 0':s -> 0':s 0' :: 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: quot(gen_0':s2_0(n4_0), gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(c)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: div They will be analysed ascendingly in the following order: div = quot