/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^3). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 3 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 395 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 179 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 1128 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 464 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 337 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 134 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 723 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 214 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 624 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 129 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) FinalProof [FINISHED, 0 ms] (62) BOUNDS(1, n^3) (63) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CpxTRS (65) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (66) typed CpxTrs (67) OrderProof [LOWER BOUND(ID), 0 ms] (68) typed CpxTrs (69) RewriteLemmaProof [LOWER BOUND(ID), 248 ms] (70) BEST (71) proven lower bound (72) LowerBoundPropagationProof [FINISHED, 0 ms] (73) BOUNDS(n^1, INF) (74) typed CpxTrs (75) RewriteLemmaProof [LOWER BOUND(ID), 87 ms] (76) BEST (77) proven lower bound (78) LowerBoundPropagationProof [FINISHED, 0 ms] (79) BOUNDS(n^2, INF) (80) typed CpxTrs (81) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (82) typed CpxTrs (83) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (84) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^3). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of if: plus, eq, divides, div, times, quot The following defined symbols can occur below the 1th argument of plus: plus, times, div, quot The following defined symbols can occur below the 1th argument of eq: plus, div, times, quot The following defined symbols can occur below the 0th argument of times: div, quot Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: div(div(x, y), z) -> div(x, times(y, z)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: times(s(x), []) div(x, []) divides(y, []) divides([], x) prime(s(s([]))) pr(x, s(s([]))) pr([], s(s(y))) The defined contexts are: if([], x1, s(x2)) eq(x0, []) times([], x1) plus(x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(0, s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(y)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] divides(y, x) -> eq(x, times(div(x, y), y)) [1] prime(s(s(x))) -> pr(s(s(x)), s(x)) [1] pr(x, s(0)) -> true [1] pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) [1] if(true, x, y) -> false [1] if(false, x, y) -> pr(x, y) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(y)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] divides(y, x) -> eq(x, times(div(x, y), y)) [1] prime(s(s(x))) -> pr(s(s(x)), s(x)) [1] pr(x, s(0)) -> true [1] pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) [1] if(true, x, y) -> false [1] if(false, x, y) -> pr(x, y) [1] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s eq :: 0:s -> 0:s -> true:false true :: true:false false :: true:false divides :: 0:s -> 0:s -> true:false prime :: 0:s -> true:false pr :: 0:s -> 0:s -> true:false if :: true:false -> 0:s -> 0:s -> true:false Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: prime_1 pr_2 if_3 (c) The following functions are completely defined: times_2 div_2 divides_2 plus_2 eq_2 quot_3 Due to the following rules being added: quot(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(x), y) -> plus(y, times(x, y)) [1] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(y)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] divides(y, x) -> eq(x, times(div(x, y), y)) [1] prime(s(s(x))) -> pr(s(s(x)), s(x)) [1] pr(x, s(0)) -> true [1] pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) [1] if(true, x, y) -> false [1] if(false, x, y) -> pr(x, y) [1] quot(v0, v1, v2) -> 0 [0] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s eq :: 0:s -> 0:s -> true:false true :: true:false false :: true:false divides :: 0:s -> 0:s -> true:false prime :: 0:s -> true:false pr :: 0:s -> 0:s -> true:false if :: true:false -> 0:s -> 0:s -> true:false Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(x, 0) -> x [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] times(0, y) -> 0 [1] times(s(0), y) -> y [1] times(s(0), y) -> plus(y, 0) [2] times(s(s(0)), y) -> plus(y, y) [2] times(s(s(x')), y) -> plus(y, plus(y, times(x', y))) [2] div(0, y) -> 0 [1] div(x, y) -> quot(x, y, y) [1] quot(0, s(y), z) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] quot(x, 0, s(z)) -> s(div(x, s(z))) [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(y)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] divides(y, 0) -> eq(0, times(0, y)) [2] divides(y, x) -> eq(x, times(quot(x, y, y), y)) [2] prime(s(s(x))) -> pr(s(s(x)), s(x)) [1] pr(x, s(0)) -> true [1] pr(x, s(s(y))) -> if(eq(x, times(div(x, s(s(y))), s(s(y)))), x, s(y)) [2] if(true, x, y) -> false [1] if(false, x, y) -> pr(x, y) [1] quot(v0, v1, v2) -> 0 [0] The TRS has the following type information: plus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s times :: 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s eq :: 0:s -> 0:s -> true:false true :: true:false false :: true:false divides :: 0:s -> 0:s -> true:false prime :: 0:s -> true:false pr :: 0:s -> 0:s -> true:false if :: true:false -> 0:s -> 0:s -> true:false Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(x, times(quot(x, y, y), y)) :|: y >= 0, x >= 0, z'' = x, z' = y divides(z', z'') -{ 2 }-> eq(0, times(0, y)) :|: z'' = 0, y >= 0, z' = y eq(z', z'') -{ 1 }-> eq(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' = 1 + x, x >= 0 eq(z', z'') -{ 1 }-> 0 :|: y >= 0, z'' = 1 + y, z' = 0 if(z', z'', z1) -{ 1 }-> pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1 plus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 pr(z', z'') -{ 2 }-> if(eq(x, times(div(x, 1 + (1 + y)), 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y) pr(z', z'') -{ 1 }-> 1 :|: z' = x, x >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + x), 1 + x) :|: x >= 0, z' = 1 + (1 + x) quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 quot(z', z'', z1) -{ 1 }-> 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z times(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(y, y) :|: z' = 1 + (1 + 0), z'' = y, y >= 0 times(z', z'') -{ 2 }-> plus(y, plus(y, times(x', y))) :|: z' = 1 + (1 + x'), z'' = y, x' >= 0, y >= 0 times(z', z'') -{ 2 }-> plus(y, 0) :|: z'' = y, y >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 1 }-> eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { eq } { div, quot } { plus } { times } { if, pr } { divides } { prime } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 1 }-> eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {eq}, {div,quot}, {plus}, {times}, {if,pr}, {divides}, {prime} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 1 }-> eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {eq}, {div,quot}, {plus}, {times}, {if,pr}, {divides}, {prime} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: eq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 1 }-> eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {eq}, {div,quot}, {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: ?, size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: eq after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 1 }-> eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {div,quot}, {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {div,quot}, {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {div,quot}, {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: ?, size: O(n^1) [z'] quot: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z' Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z' + z'' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', z'') :|: z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 2 }-> eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 2 }-> if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 1 }-> 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 7 + z' + 3*z'' }-> eq(z'', times(s2, z')) :|: s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 5 + 3*z' }-> if(eq(z', times(s3, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 7 + z' + 3*z'' }-> eq(z'', times(s2, z')) :|: s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 5 + 3*z' }-> if(eq(z', times(s3, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 7 + z' + 3*z'' }-> eq(z'', times(s2, z')) :|: s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 5 + 3*z' }-> if(eq(z', times(s3, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 2 }-> plus(z'', 0) :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 7 + z' + 3*z'' }-> eq(z'', times(s2, z')) :|: s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 5 + 3*z' }-> if(eq(z', times(s3, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z'*z'' + 4*z'' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 7 + z' + 3*z'' }-> eq(z'', times(s2, z')) :|: s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 5 + 3*z' }-> if(eq(z', times(s3, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {times}, {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: ?, size: O(n^2) [2*z'*z'' + 4*z''] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 4*z' + 2*z'*z'' + 2*z'' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 7 + z' + 3*z'' }-> eq(z'', times(s2, z')) :|: s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 divides(z', z'') -{ 2 }-> eq(0, times(0, z')) :|: z'' = 0, z' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 5 + 3*z' }-> if(eq(z', times(s3, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 2 }-> plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 16 + 4*s3 + 2*s3*z'' + 4*z' + 2*z'' }-> if(s15, z', 1 + (z'' - 2)) :|: s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 Computed SIZE bound using CoFloCo for: pr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 16 + 4*s3 + 2*s3*z'' + 4*z' + 2*z'' }-> if(s15, z', 1 + (z'' - 2)) :|: s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {if,pr}, {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: ?, size: O(1) [1] pr: runtime: ?, size: O(1) [1] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2 Computed RUNTIME bound using KoAT for: pr after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 16 + 4*s3 + 2*s3*z'' + 4*z' + 2*z'' }-> if(s15, z', 1 + (z'' - 2)) :|: s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ 1 }-> pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 5 + 2*z'' + 12*z''*z1 + 4*z''*z1^2 + 30*z1 + 4*z1^2 }-> s18 :|: s18 >= 0, s18 <= 1, z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 3 + 4*s3 + 2*s3*z'' + -2*z' + 10*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 }-> s17 :|: s17 >= 0, s17 <= 1, s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ -21 + 16*z' + 8*z'^2 + 4*z'^3 }-> s16 :|: s16 >= 0, s16 <= 1, z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: divides after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 5 + 2*z'' + 12*z''*z1 + 4*z''*z1^2 + 30*z1 + 4*z1^2 }-> s18 :|: s18 >= 0, s18 <= 1, z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 3 + 4*s3 + 2*s3*z'' + -2*z' + 10*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 }-> s17 :|: s17 >= 0, s17 <= 1, s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ -21 + 16*z' + 8*z'^2 + 4*z'^3 }-> s16 :|: s16 >= 0, s16 <= 1, z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {divides}, {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] divides: runtime: ?, size: O(1) [1] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: divides after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 35 + 7*z' + 2*z'*z'' + 8*z'' ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 5 + 2*z'' + 12*z''*z1 + 4*z''*z1^2 + 30*z1 + 4*z1^2 }-> s18 :|: s18 >= 0, s18 <= 1, z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 3 + 4*s3 + 2*s3*z'' + -2*z' + 10*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 }-> s17 :|: s17 >= 0, s17 <= 1, s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ -21 + 16*z' + 8*z'^2 + 4*z'^3 }-> s16 :|: s16 >= 0, s16 <= 1, z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] divides: runtime: O(n^2) [35 + 7*z' + 2*z'*z'' + 8*z''], size: O(1) [1] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 5 + 2*z'' + 12*z''*z1 + 4*z''*z1^2 + 30*z1 + 4*z1^2 }-> s18 :|: s18 >= 0, s18 <= 1, z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 3 + 4*s3 + 2*s3*z'' + -2*z' + 10*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 }-> s17 :|: s17 >= 0, s17 <= 1, s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ -21 + 16*z' + 8*z'^2 + 4*z'^3 }-> s16 :|: s16 >= 0, s16 <= 1, z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] divides: runtime: O(n^2) [35 + 7*z' + 2*z'*z'' + 8*z''], size: O(1) [1] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: prime after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 5 + 2*z'' + 12*z''*z1 + 4*z''*z1^2 + 30*z1 + 4*z1^2 }-> s18 :|: s18 >= 0, s18 <= 1, z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 3 + 4*s3 + 2*s3*z'' + -2*z' + 10*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 }-> s17 :|: s17 >= 0, s17 <= 1, s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ -21 + 16*z' + 8*z'^2 + 4*z'^3 }-> s16 :|: s16 >= 0, s16 <= 1, z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: {prime} Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] divides: runtime: O(n^2) [35 + 7*z' + 2*z'*z'' + 8*z''], size: O(1) [1] prime: runtime: ?, size: O(1) [1] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: prime after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 16*z' + 8*z'^2 + 4*z'^3 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 6 + 3*z' + z'' }-> s' :|: s' >= 0, s' <= z' + 1, z' >= 0, z'' >= 0 div(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 divides(z', z'') -{ 13 + 2*z' }-> s11 :|: s10 >= 0, s10 <= 2 * (0 * z') + 4 * z', s11 >= 0, s11 <= 1, z'' = 0, z' >= 0 divides(z', z'') -{ 18 + 4*s2 + 2*s2*z' + 3*z' + 4*z'' }-> s13 :|: s12 >= 0, s12 <= 2 * (s2 * z') + 4 * z', s13 >= 0, s13 <= 1, s2 >= 0, s2 <= z'' + 1, z' >= 0, z'' >= 0 eq(z', z'') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0 eq(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 0 eq(z', z'') -{ 1 }-> 0 :|: z'' = 0, z' - 1 >= 0 eq(z', z'') -{ 1 }-> 0 :|: z'' - 1 >= 0, z' = 0 if(z', z'', z1) -{ 5 + 2*z'' + 12*z''*z1 + 4*z''*z1^2 + 30*z1 + 4*z1^2 }-> s18 :|: s18 >= 0, s18 <= 1, z'' >= 0, z1 >= 0, z' = 0 if(z', z'', z1) -{ 1 }-> 0 :|: z'' >= 0, z1 >= 0, z' = 1 plus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 pr(z', z'') -{ 3 + 4*s3 + 2*s3*z'' + -2*z' + 10*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2 }-> s17 :|: s17 >= 0, s17 <= 1, s14 >= 0, s14 <= 2 * (s3 * (1 + (1 + (z'' - 2)))) + 4 * (1 + (1 + (z'' - 2))), s15 >= 0, s15 <= 1, s3 >= 0, s3 <= z', z' >= 0, z'' - 2 >= 0 pr(z', z'') -{ 1 }-> 1 :|: z' >= 0, z'' = 1 + 0 prime(z') -{ -21 + 16*z' + 8*z'^2 + 4*z'^3 }-> s16 :|: s16 >= 0, s16 <= 1, z' - 2 >= 0 quot(z', z'', z1) -{ 2 + 3*z' + z'' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 quot(z', z'', z1) -{ 4 + 3*z' }-> 1 + s1 :|: s1 >= 0, s1 <= z', z'' = 0, z1 - 1 >= 0, z' >= 0 times(z', z'') -{ 3 + z'' }-> s5 :|: s5 >= 0, s5 <= z'' + 0, z'' >= 0, z' = 1 + 0 times(z', z'') -{ 3 + z'' }-> s6 :|: s6 >= 0, s6 <= z'' + z'', z' = 1 + (1 + 0), z'' >= 0 times(z', z'') -{ 4 + 4*z' + 2*z'*z'' }-> s9 :|: s7 >= 0, s7 <= 2 * ((z' - 2) * z'') + 4 * z'', s8 >= 0, s8 <= z'' + s7, s9 >= 0, s9 <= z'' + s8, z' - 2 >= 0, z'' >= 0 times(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 1 + 0 times(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: eq: runtime: O(n^1) [3 + z'], size: O(1) [1] div: runtime: O(n^1) [3 + 3*z'], size: O(n^1) [z'] quot: runtime: O(n^1) [5 + 3*z' + z''], size: O(n^1) [1 + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] times: runtime: O(n^2) [8 + 4*z' + 2*z'*z'' + 2*z''], size: O(n^2) [2*z'*z'' + 4*z''] if: runtime: O(n^3) [19 + 8*z'' + 18*z''*z1 + 4*z''*z1^2 + 36*z1 + 4*z1^2], size: O(1) [1] pr: runtime: O(n^3) [4 + 2*z' + 12*z'*z'' + 4*z'*z''^2 + 30*z'' + 4*z''^2], size: O(1) [1] divides: runtime: O(n^2) [35 + 7*z' + 2*z'*z'' + 8*z''], size: O(1) [1] prime: runtime: O(n^3) [16*z' + 8*z'^2 + 4*z'^3], size: O(1) [1] ---------------------------------------- (61) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (62) BOUNDS(1, n^3) ---------------------------------------- (63) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (64) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (65) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (66) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (67) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, div, quot, eq, pr They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (68) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot, eq, pr They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (69) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(plus(gen_0':s3_0(n5_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c6_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (70) Complex Obligation (BEST) ---------------------------------------- (71) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, times, div, quot, eq, pr They will be analysed ascendingly in the following order: plus < times times < div div = quot ---------------------------------------- (72) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (73) BOUNDS(n^1, INF) ---------------------------------------- (74) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times, div, quot, eq, pr They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (75) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s3_0(n758_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n758_0, b)), rt in Omega(1 + b*n758_0 + n758_0) Induction Base: times(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s3_0(+(n758_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) plus(gen_0':s3_0(b), times(gen_0':s3_0(n758_0), gen_0':s3_0(b))) ->_IH plus(gen_0':s3_0(b), gen_0':s3_0(*(c759_0, b))) ->_L^Omega(1 + b) gen_0':s3_0(+(b, *(n758_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (76) Complex Obligation (BEST) ---------------------------------------- (77) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times, div, quot, eq, pr They will be analysed ascendingly in the following order: times < div div = quot ---------------------------------------- (78) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (79) BOUNDS(n^2, INF) ---------------------------------------- (80) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) times(gen_0':s3_0(n758_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n758_0, b)), rt in Omega(1 + b*n758_0 + n758_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: eq, div, quot, pr They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (81) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s3_0(n1791_0), gen_0':s3_0(n1791_0)) -> true, rt in Omega(1 + n1791_0) Induction Base: eq(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s3_0(+(n1791_0, 1)), gen_0':s3_0(+(n1791_0, 1))) ->_R^Omega(1) eq(gen_0':s3_0(n1791_0), gen_0':s3_0(n1791_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (82) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) times(gen_0':s3_0(n758_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n758_0, b)), rt in Omega(1 + b*n758_0 + n758_0) eq(gen_0':s3_0(n1791_0), gen_0':s3_0(n1791_0)) -> true, rt in Omega(1 + n1791_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: pr, div, quot They will be analysed ascendingly in the following order: div = quot ---------------------------------------- (83) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s3_0(n2446_0), gen_0':s3_0(+(1, n2446_0)), gen_0':s3_0(c)) -> gen_0':s3_0(0), rt in Omega(1 + n2446_0) Induction Base: quot(gen_0':s3_0(0), gen_0':s3_0(+(1, 0)), gen_0':s3_0(c)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s3_0(+(n2446_0, 1)), gen_0':s3_0(+(1, +(n2446_0, 1))), gen_0':s3_0(c)) ->_R^Omega(1) quot(gen_0':s3_0(n2446_0), gen_0':s3_0(+(1, n2446_0)), gen_0':s3_0(c)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (84) Obligation: TRS: Rules: plus(x, 0') -> x plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(0'), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0', y) -> 0' div(x, y) -> quot(x, y, y) quot(0', s(y), z) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0', s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(y, z)) eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0')) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s eq :: 0':s -> 0':s -> true:false true :: true:false false :: true:false divides :: 0':s -> 0':s -> true:false prime :: 0':s -> true:false pr :: 0':s -> 0':s -> true:false if :: true:false -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) times(gen_0':s3_0(n758_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n758_0, b)), rt in Omega(1 + b*n758_0 + n758_0) eq(gen_0':s3_0(n1791_0), gen_0':s3_0(n1791_0)) -> true, rt in Omega(1 + n1791_0) quot(gen_0':s3_0(n2446_0), gen_0':s3_0(+(1, n2446_0)), gen_0':s3_0(c)) -> gen_0':s3_0(0), rt in Omega(1 + n2446_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: div They will be analysed ascendingly in the following order: div = quot