/export/starexec/sandbox2/solver/bin/starexec_run_tct_rc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,y,z){z -> s(z)} = f(x,y,s(z)) ->^+ s(f(0(),1(),z)) = C[f(0(),1(),z) = f(x,y,z){x -> 0(),y -> 1()}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) ** Step 1.b:3: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) 3: g#(x,y) -> c_3(x) The strictly oriented rules are moved into the weak component. *** Step 1.b:3.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(f) = [2] x1 + [1] x2 + [1] x3 + [0] p(g) = [1] p(s) = [1] x1 + [1] p(f#) = [4] x3 + [8] p(g#) = [10] x1 + [5] x2 + [1] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [2] x1 + [1] Following rules are strictly oriented: f#(x,y,s(z)) = [4] z + [12] > [4] z + [8] = c_1(f#(0(),1(),z)) g#(x,y) = [10] x + [5] y + [1] > [0] = c_3(x) Following rules are (at-least) weakly oriented: f#(0(),1(),x) = [4] x + [8] >= [4] x + [8] = c_2(f#(s(x),x,x)) g#(x,y) = [10] x + [5] y + [1] >= [2] y + [1] = c_4(y) *** Step 1.b:3.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_4(y) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) g#(x,y) -> c_3(x) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () *** Step 1.b:3.b:1: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_4(y) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) g#(x,y) -> c_3(x) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: g#(x,y) -> c_4(y) The strictly oriented rules are moved into the weak component. **** Step 1.b:3.b:1.a:1: NaturalMI. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_4(y) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) g#(x,y) -> c_3(x) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(1) = [1] p(f) = [1] x1 + [1] p(g) = [4] x1 + [1] p(s) = [1] p(f#) = [0] p(g#) = [1] x1 + [7] p(c_1) = [1] x1 + [0] p(c_2) = [4] x1 + [0] p(c_3) = [4] p(c_4) = [0] Following rules are strictly oriented: g#(x,y) = [1] x + [7] > [0] = c_4(y) Following rules are (at-least) weakly oriented: f#(x,y,s(z)) = [0] >= [0] = c_1(f#(0(),1(),z)) f#(0(),1(),x) = [0] >= [0] = c_2(f#(s(x),x,x)) g#(x,y) = [1] x + [7] >= [4] = c_3(x) **** Step 1.b:3.b:1.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () **** Step 1.b:3.b:1.b:1: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) The strictly oriented rules are moved into the weak component. ***** Step 1.b:3.b:1.b:1.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] [5] p(1) = [1] [7] p(f) = [4 4] x1 + [0 4] x2 + [1 1] x3 + [0] [4 1] [1 1] [0 2] [4] p(g) = [0 4] x1 + [2 1] x2 + [0] [4 1] [1 0] [2] p(s) = [1 0] x1 + [2] [0 0] [4] p(f#) = [0 1] x1 + [0 0] x2 + [4 0] x3 + [2] [4 0] [0 1] [0 0] [1] p(g#) = [0 1] x1 + [1 1] x2 + [2] [2 1] [0 2] [0] p(c_1) = [1 0] x1 + [3] [0 0] [1] p(c_2) = [1 0] x1 + [0] [0 0] [4] p(c_3) = [0 1] x1 + [0] [1 0] [0] p(c_4) = [0 1] x1 + [1] [0 2] [0] Following rules are strictly oriented: f#(0(),1(),x) = [4 0] x + [7] [0 0] [8] > [4 0] x + [6] [0 0] [4] = c_2(f#(s(x),x,x)) Following rules are (at-least) weakly oriented: f#(x,y,s(z)) = [0 1] x + [0 0] y + [4 0] z + [10] [4 0] [0 1] [0 0] [1] >= [4 0] z + [10] [0 0] [1] = c_1(f#(0(),1(),z)) g#(x,y) = [0 1] x + [1 1] y + [2] [2 1] [0 2] [0] >= [0 1] x + [0] [1 0] [0] = c_3(x) g#(x,y) = [0 1] x + [1 1] y + [2] [2 1] [0 2] [0] >= [0 1] y + [1] [0 2] [0] = c_4(y) ***** Step 1.b:3.b:1.b:1.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () ***** Step 1.b:3.b:1.b:1.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3(x) g#(x,y) -> c_4(y) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) -->_1 f#(0(),1(),x) -> c_2(f#(s(x),x,x)):2 -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 2:W:f#(0(),1(),x) -> c_2(f#(s(x),x,x)) -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 3:W:g#(x,y) -> c_3(x) -->_1 g#(x,y) -> c_4(y):4 -->_1 g#(x,y) -> c_3(x):3 -->_1 f#(0(),1(),x) -> c_2(f#(s(x),x,x)):2 -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 4:W:g#(x,y) -> c_4(y) -->_1 g#(x,y) -> c_4(y):4 -->_1 g#(x,y) -> c_3(x):3 -->_1 f#(0(),1(),x) -> c_2(f#(s(x),x,x)):2 -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: g#(x,y) -> c_3(x) 4: g#(x,y) -> c_4(y) 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) 2: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) ***** Step 1.b:3.b:1.b:1.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))