/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 1199 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 2061 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 2370 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) f(0) -> s(0) f(s(x)) -> minus(s(x), g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x), f(g(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s g :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, f, g They will be analysed ascendingly in the following order: minus < f minus < g f = g ---------------------------------------- (6) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s g :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, f, g They will be analysed ascendingly in the following order: minus < f minus < g f = g ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Induction Base: minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(0) Induction Step: minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s g :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, f, g They will be analysed ascendingly in the following order: minus < f minus < g f = g ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s g :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: g, f They will be analysed ascendingly in the following order: f = g ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s2_0(+(1, n216_0))) -> *3_0, rt in Omega(n216_0) Induction Base: g(gen_0':s2_0(+(1, 0))) Induction Step: g(gen_0':s2_0(+(1, +(n216_0, 1)))) ->_R^Omega(1) minus(s(gen_0':s2_0(+(1, n216_0))), f(g(gen_0':s2_0(+(1, n216_0))))) ->_IH minus(s(gen_0':s2_0(+(1, n216_0))), f(*3_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s g :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) g(gen_0':s2_0(+(1, n216_0))) -> *3_0, rt in Omega(n216_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: f They will be analysed ascendingly in the following order: f = g ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':s2_0(+(1, n3745_0))) -> *3_0, rt in Omega(n3745_0) Induction Base: f(gen_0':s2_0(+(1, 0))) Induction Step: f(gen_0':s2_0(+(1, +(n3745_0, 1)))) ->_R^Omega(1) minus(s(gen_0':s2_0(+(1, n3745_0))), g(f(gen_0':s2_0(+(1, n3745_0))))) ->_IH minus(s(gen_0':s2_0(+(1, n3745_0))), g(*3_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) f(0') -> s(0') f(s(x)) -> minus(s(x), g(f(x))) g(0') -> 0' g(s(x)) -> minus(s(x), f(g(x))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: 0':s -> 0':s g :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) g(gen_0':s2_0(+(1, n216_0))) -> *3_0, rt in Omega(n216_0) f(gen_0':s2_0(+(1, n3745_0))) -> *3_0, rt in Omega(n3745_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: g They will be analysed ascendingly in the following order: f = g ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s2_0(+(1, n63581_0))) -> *3_0, rt in Omega(n63581_0) Induction Base: g(gen_0':s2_0(+(1, 0))) Induction Step: g(gen_0':s2_0(+(1, +(n63581_0, 1)))) ->_R^Omega(1) minus(s(gen_0':s2_0(+(1, n63581_0))), f(g(gen_0':s2_0(+(1, n63581_0))))) ->_IH minus(s(gen_0':s2_0(+(1, n63581_0))), f(*3_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) BOUNDS(1, INF)