/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 283 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 43 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 36 ms] (22) proven lower bound (23) LowerBoundPropagationProof [FINISHED, 0 ms] (24) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, quot, le, app, low, high, quicksort They will be analysed ascendingly in the following order: minus < quot le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (6) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: minus, quot, le, app, low, high, quicksort They will be analysed ascendingly in the following order: minus < quot le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) Induction Base: minus(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) gen_0':s4_0(0) Induction Step: minus(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: minus, quot, le, app, low, high, quicksort They will be analysed ascendingly in the following order: minus < quot le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Lemmas: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: quot, le, app, low, high, quicksort They will be analysed ascendingly in the following order: le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) -> true, rt in Omega(1 + n507_0) Induction Base: le(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s4_0(+(n507_0, 1)), gen_0':s4_0(+(n507_0, 1))) ->_R^Omega(1) le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Lemmas: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) -> true, rt in Omega(1 + n507_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: app, low, high, quicksort They will be analysed ascendingly in the following order: app < quicksort low < quicksort high < quicksort ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:add5_0(n818_0), gen_nil:add5_0(b)) -> gen_nil:add5_0(+(n818_0, b)), rt in Omega(1 + n818_0) Induction Base: app(gen_nil:add5_0(0), gen_nil:add5_0(b)) ->_R^Omega(1) gen_nil:add5_0(b) Induction Step: app(gen_nil:add5_0(+(n818_0, 1)), gen_nil:add5_0(b)) ->_R^Omega(1) add(0', app(gen_nil:add5_0(n818_0), gen_nil:add5_0(b))) ->_IH add(0', gen_nil:add5_0(+(b, c819_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Lemmas: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) -> true, rt in Omega(1 + n507_0) app(gen_nil:add5_0(n818_0), gen_nil:add5_0(b)) -> gen_nil:add5_0(+(n818_0, b)), rt in Omega(1 + n818_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: low, high, quicksort They will be analysed ascendingly in the following order: low < quicksort high < quicksort ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: low(gen_0':s4_0(0), gen_nil:add5_0(n1743_0)) -> gen_nil:add5_0(n1743_0), rt in Omega(1 + n1743_0) Induction Base: low(gen_0':s4_0(0), gen_nil:add5_0(0)) ->_R^Omega(1) nil Induction Step: low(gen_0':s4_0(0), gen_nil:add5_0(+(n1743_0, 1))) ->_R^Omega(1) if_low(le(0', gen_0':s4_0(0)), gen_0':s4_0(0), add(0', gen_nil:add5_0(n1743_0))) ->_L^Omega(1) if_low(true, gen_0':s4_0(0), add(0', gen_nil:add5_0(n1743_0))) ->_R^Omega(1) add(0', low(gen_0':s4_0(0), gen_nil:add5_0(n1743_0))) ->_IH add(0', gen_nil:add5_0(c1744_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Lemmas: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) -> true, rt in Omega(1 + n507_0) app(gen_nil:add5_0(n818_0), gen_nil:add5_0(b)) -> gen_nil:add5_0(+(n818_0, b)), rt in Omega(1 + n818_0) low(gen_0':s4_0(0), gen_nil:add5_0(n1743_0)) -> gen_nil:add5_0(n1743_0), rt in Omega(1 + n1743_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: high, quicksort They will be analysed ascendingly in the following order: high < quicksort ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: high(gen_0':s4_0(0), gen_nil:add5_0(n2335_0)) -> gen_nil:add5_0(0), rt in Omega(1 + n2335_0) Induction Base: high(gen_0':s4_0(0), gen_nil:add5_0(0)) ->_R^Omega(1) nil Induction Step: high(gen_0':s4_0(0), gen_nil:add5_0(+(n2335_0, 1))) ->_R^Omega(1) if_high(le(0', gen_0':s4_0(0)), gen_0':s4_0(0), add(0', gen_nil:add5_0(n2335_0))) ->_L^Omega(1) if_high(true, gen_0':s4_0(0), add(0', gen_nil:add5_0(n2335_0))) ->_R^Omega(1) high(gen_0':s4_0(0), gen_nil:add5_0(n2335_0)) ->_IH gen_nil:add5_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Lemmas: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) -> true, rt in Omega(1 + n507_0) app(gen_nil:add5_0(n818_0), gen_nil:add5_0(b)) -> gen_nil:add5_0(+(n818_0, b)), rt in Omega(1 + n818_0) low(gen_0':s4_0(0), gen_nil:add5_0(n1743_0)) -> gen_nil:add5_0(n1743_0), rt in Omega(1 + n1743_0) high(gen_0':s4_0(0), gen_nil:add5_0(n2335_0)) -> gen_nil:add5_0(0), rt in Omega(1 + n2335_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: quicksort ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quicksort(gen_nil:add5_0(n2923_0)) -> gen_nil:add5_0(n2923_0), rt in Omega(1 + n2923_0 + n2923_0^2) Induction Base: quicksort(gen_nil:add5_0(0)) ->_R^Omega(1) nil Induction Step: quicksort(gen_nil:add5_0(+(n2923_0, 1))) ->_R^Omega(1) app(quicksort(low(0', gen_nil:add5_0(n2923_0))), add(0', quicksort(high(0', gen_nil:add5_0(n2923_0))))) ->_L^Omega(1 + n2923_0) app(quicksort(gen_nil:add5_0(n2923_0)), add(0', quicksort(high(0', gen_nil:add5_0(n2923_0))))) ->_IH app(gen_nil:add5_0(c2924_0), add(0', quicksort(high(0', gen_nil:add5_0(n2923_0))))) ->_L^Omega(1 + n2923_0) app(gen_nil:add5_0(n2923_0), add(0', quicksort(gen_nil:add5_0(0)))) ->_R^Omega(1) app(gen_nil:add5_0(n2923_0), add(0', nil)) ->_L^Omega(1 + n2923_0) gen_nil:add5_0(+(n2923_0, +(0, 1))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (22) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s le :: 0':s -> 0':s -> true:false true :: true:false false :: true:false app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: 0':s -> nil:add -> nil:add low :: 0':s -> nil:add -> nil:add if_low :: true:false -> 0':s -> nil:add -> nil:add high :: 0':s -> nil:add -> nil:add if_high :: true:false -> 0':s -> nil:add -> nil:add quicksort :: nil:add -> nil:add hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false hole_nil:add3_0 :: nil:add gen_0':s4_0 :: Nat -> 0':s gen_nil:add5_0 :: Nat -> nil:add Lemmas: minus(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> gen_0':s4_0(0), rt in Omega(1 + n7_0) le(gen_0':s4_0(n507_0), gen_0':s4_0(n507_0)) -> true, rt in Omega(1 + n507_0) app(gen_nil:add5_0(n818_0), gen_nil:add5_0(b)) -> gen_nil:add5_0(+(n818_0, b)), rt in Omega(1 + n818_0) low(gen_0':s4_0(0), gen_nil:add5_0(n1743_0)) -> gen_nil:add5_0(n1743_0), rt in Omega(1 + n1743_0) high(gen_0':s4_0(0), gen_nil:add5_0(n2335_0)) -> gen_nil:add5_0(0), rt in Omega(1 + n2335_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:add5_0(0) <=> nil gen_nil:add5_0(+(x, 1)) <=> add(0', gen_nil:add5_0(x)) The following defined symbols remain to be analysed: quicksort ---------------------------------------- (23) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (24) BOUNDS(n^2, INF)