/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, n^3). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 4 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 390 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 304 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 137 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 395 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) FinalProof [FINISHED, 0 ms] (36) BOUNDS(1, n^3) (37) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxTRS (39) SlicingProof [LOWER BOUND(ID), 0 ms] (40) CpxTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 0 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 308 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 19 ms] (52) BEST (53) proven lower bound (54) LowerBoundPropagationProof [FINISHED, 0 ms] (55) BOUNDS(n^2, INF) (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 4 ms] (58) proven lower bound (59) LowerBoundPropagationProof [FINISHED, 0 ms] (60) BOUNDS(n^3, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, x)) -> app(reverse(x), add(n, nil)) [1] shuffle(nil) -> nil [1] shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, x)) -> app(reverse(x), add(n, nil)) [1] shuffle(nil) -> nil [1] shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) [1] The TRS has the following type information: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: a -> nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: shuffle_1 (c) The following functions are completely defined: reverse_1 app_2 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, x)) -> app(reverse(x), add(n, nil)) [1] shuffle(nil) -> nil [1] shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) [1] The TRS has the following type information: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: a -> nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: app(nil, y) -> y [1] app(add(n, x), y) -> add(n, app(x, y)) [1] reverse(nil) -> nil [1] reverse(add(n, nil)) -> app(nil, add(n, nil)) [2] reverse(add(n, add(n', x'))) -> app(app(reverse(x'), add(n', nil)), add(n, nil)) [2] shuffle(nil) -> nil [1] shuffle(add(n, nil)) -> add(n, shuffle(nil)) [2] shuffle(add(n, add(n'', x''))) -> add(n, shuffle(app(reverse(x''), add(n'', nil)))) [2] The TRS has the following type information: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: a -> nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 const => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y app(z, z') -{ 1 }-> 1 + n + app(x, y) :|: n >= 0, x >= 0, y >= 0, z = 1 + n + x, z' = y reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 2 }-> app(0, 1 + n + 0) :|: z = 1 + n + 0, n >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + n + shuffle(0) :|: z = 1 + n + 0, n >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 1 }-> 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 2 }-> app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { app } { reverse } { shuffle } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 1 }-> 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 2 }-> app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {app}, {reverse}, {shuffle} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 1 }-> 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 2 }-> app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {app}, {reverse}, {shuffle} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: app after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 1 }-> 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 2 }-> app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {app}, {reverse}, {shuffle} Previous analysis results are: app: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: app after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 1 }-> 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 2 }-> app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {reverse}, {shuffle} Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 2 + x }-> 1 + n + s :|: s >= 0, s <= x + z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 3 }-> s' :|: s' >= 0, s' <= 0 + (1 + (z - 1) + 0), z - 1 >= 0 reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {reverse}, {shuffle} Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: reverse after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 2 + x }-> 1 + n + s :|: s >= 0, s <= x + z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 3 }-> s' :|: s' >= 0, s' <= 0 + (1 + (z - 1) + 0), z - 1 >= 0 reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {reverse}, {shuffle} Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] reverse: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: reverse after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 3*z + 2*z^2 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 2 + x }-> 1 + n + s :|: s >= 0, s <= x + z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 3 }-> s' :|: s' >= 0, s' <= 0 + (1 + (z - 1) + 0), z - 1 >= 0 reverse(z) -{ 2 }-> app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 2 }-> 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {shuffle} Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] reverse: runtime: O(n^2) [4 + 3*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 2 + x }-> 1 + n + s :|: s >= 0, s <= x + z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 3 }-> s' :|: s' >= 0, s' <= 0 + (1 + (z - 1) + 0), z - 1 >= 0 reverse(z) -{ 8 + s'' + s1 + 3*x' + 2*x'^2 }-> s2 :|: s'' >= 0, s'' <= x', s1 >= 0, s1 <= s'' + (1 + n' + 0), s2 >= 0, s2 <= s1 + (1 + n + 0), n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 7 + s3 + 3*x'' + 2*x''^2 }-> 1 + n + shuffle(s4) :|: s3 >= 0, s3 <= x'', s4 >= 0, s4 <= s3 + (1 + n'' + 0), n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {shuffle} Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] reverse: runtime: O(n^2) [4 + 3*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: shuffle after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 2 + x }-> 1 + n + s :|: s >= 0, s <= x + z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 3 }-> s' :|: s' >= 0, s' <= 0 + (1 + (z - 1) + 0), z - 1 >= 0 reverse(z) -{ 8 + s'' + s1 + 3*x' + 2*x'^2 }-> s2 :|: s'' >= 0, s'' <= x', s1 >= 0, s1 <= s'' + (1 + n' + 0), s2 >= 0, s2 <= s1 + (1 + n + 0), n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 7 + s3 + 3*x'' + 2*x''^2 }-> 1 + n + shuffle(s4) :|: s3 >= 0, s3 <= x'', s4 >= 0, s4 <= s3 + (1 + n'' + 0), n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: {shuffle} Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] reverse: runtime: O(n^2) [4 + 3*z + 2*z^2], size: O(n^1) [z] shuffle: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: shuffle after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 9*z + 4*z^2 + 2*z^3 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: app(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 app(z, z') -{ 2 + x }-> 1 + n + s :|: s >= 0, s <= x + z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x reverse(z) -{ 3 }-> s' :|: s' >= 0, s' <= 0 + (1 + (z - 1) + 0), z - 1 >= 0 reverse(z) -{ 8 + s'' + s1 + 3*x' + 2*x'^2 }-> s2 :|: s'' >= 0, s'' <= x', s1 >= 0, s1 <= s'' + (1 + n' + 0), s2 >= 0, s2 <= s1 + (1 + n + 0), n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0 reverse(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 1 }-> 0 :|: z = 0 shuffle(z) -{ 7 + s3 + 3*x'' + 2*x''^2 }-> 1 + n + shuffle(s4) :|: s3 >= 0, s3 <= x'', s4 >= 0, s4 <= s3 + (1 + n'' + 0), n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'') shuffle(z) -{ 2 }-> 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: app: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] reverse: runtime: O(n^2) [4 + 3*z + 2*z^2], size: O(n^1) [z] shuffle: runtime: O(n^3) [1 + 9*z + 4*z^2 + 2*z^3], size: O(n^1) [z] ---------------------------------------- (35) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (36) BOUNDS(1, n^3) ---------------------------------------- (37) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (38) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (39) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: add/0 ---------------------------------------- (40) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (42) Obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: app, reverse, shuffle They will be analysed ascendingly in the following order: app < reverse reverse < shuffle ---------------------------------------- (44) Obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add Generator Equations: gen_nil:add2_0(0) <=> nil gen_nil:add2_0(+(x, 1)) <=> add(gen_nil:add2_0(x)) The following defined symbols remain to be analysed: app, reverse, shuffle They will be analysed ascendingly in the following order: app < reverse reverse < shuffle ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:add2_0(n4_0), gen_nil:add2_0(b)) -> gen_nil:add2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: app(gen_nil:add2_0(0), gen_nil:add2_0(b)) ->_R^Omega(1) gen_nil:add2_0(b) Induction Step: app(gen_nil:add2_0(+(n4_0, 1)), gen_nil:add2_0(b)) ->_R^Omega(1) add(app(gen_nil:add2_0(n4_0), gen_nil:add2_0(b))) ->_IH add(gen_nil:add2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add Generator Equations: gen_nil:add2_0(0) <=> nil gen_nil:add2_0(+(x, 1)) <=> add(gen_nil:add2_0(x)) The following defined symbols remain to be analysed: app, reverse, shuffle They will be analysed ascendingly in the following order: app < reverse reverse < shuffle ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add Lemmas: app(gen_nil:add2_0(n4_0), gen_nil:add2_0(b)) -> gen_nil:add2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_nil:add2_0(0) <=> nil gen_nil:add2_0(+(x, 1)) <=> add(gen_nil:add2_0(x)) The following defined symbols remain to be analysed: reverse, shuffle They will be analysed ascendingly in the following order: reverse < shuffle ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: reverse(gen_nil:add2_0(n439_0)) -> gen_nil:add2_0(n439_0), rt in Omega(1 + n439_0 + n439_0^2) Induction Base: reverse(gen_nil:add2_0(0)) ->_R^Omega(1) nil Induction Step: reverse(gen_nil:add2_0(+(n439_0, 1))) ->_R^Omega(1) app(reverse(gen_nil:add2_0(n439_0)), add(nil)) ->_IH app(gen_nil:add2_0(c440_0), add(nil)) ->_L^Omega(1 + n439_0) gen_nil:add2_0(+(n439_0, +(0, 1))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (52) Complex Obligation (BEST) ---------------------------------------- (53) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add Lemmas: app(gen_nil:add2_0(n4_0), gen_nil:add2_0(b)) -> gen_nil:add2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_nil:add2_0(0) <=> nil gen_nil:add2_0(+(x, 1)) <=> add(gen_nil:add2_0(x)) The following defined symbols remain to be analysed: reverse, shuffle They will be analysed ascendingly in the following order: reverse < shuffle ---------------------------------------- (54) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (55) BOUNDS(n^2, INF) ---------------------------------------- (56) Obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add Lemmas: app(gen_nil:add2_0(n4_0), gen_nil:add2_0(b)) -> gen_nil:add2_0(+(n4_0, b)), rt in Omega(1 + n4_0) reverse(gen_nil:add2_0(n439_0)) -> gen_nil:add2_0(n439_0), rt in Omega(1 + n439_0 + n439_0^2) Generator Equations: gen_nil:add2_0(0) <=> nil gen_nil:add2_0(+(x, 1)) <=> add(gen_nil:add2_0(x)) The following defined symbols remain to be analysed: shuffle ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: shuffle(gen_nil:add2_0(n623_0)) -> gen_nil:add2_0(n623_0), rt in Omega(1 + n623_0 + n623_0^2 + n623_0^3) Induction Base: shuffle(gen_nil:add2_0(0)) ->_R^Omega(1) nil Induction Step: shuffle(gen_nil:add2_0(+(n623_0, 1))) ->_R^Omega(1) add(shuffle(reverse(gen_nil:add2_0(n623_0)))) ->_L^Omega(1 + n623_0 + n623_0^2) add(shuffle(gen_nil:add2_0(n623_0))) ->_IH add(gen_nil:add2_0(c624_0)) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (58) Obligation: Proved the lower bound n^3 for the following obligation: TRS: Rules: app(nil, y) -> y app(add(x), y) -> add(app(x, y)) reverse(nil) -> nil reverse(add(x)) -> app(reverse(x), add(nil)) shuffle(nil) -> nil shuffle(add(x)) -> add(shuffle(reverse(x))) Types: app :: nil:add -> nil:add -> nil:add nil :: nil:add add :: nil:add -> nil:add reverse :: nil:add -> nil:add shuffle :: nil:add -> nil:add hole_nil:add1_0 :: nil:add gen_nil:add2_0 :: Nat -> nil:add Lemmas: app(gen_nil:add2_0(n4_0), gen_nil:add2_0(b)) -> gen_nil:add2_0(+(n4_0, b)), rt in Omega(1 + n4_0) reverse(gen_nil:add2_0(n439_0)) -> gen_nil:add2_0(n439_0), rt in Omega(1 + n439_0 + n439_0^2) Generator Equations: gen_nil:add2_0(0) <=> nil gen_nil:add2_0(+(x, 1)) <=> add(gen_nil:add2_0(x)) The following defined symbols remain to be analysed: shuffle ---------------------------------------- (59) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (60) BOUNDS(n^3, INF)