/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 273 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 9 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) conv(0) -> cons(nil, 0) conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) conv(0') -> cons(nil, 0') conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) conv(0') -> cons(nil, 0') conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s conv :: 0':s -> nil:cons cons :: nil:cons -> 0':s -> nil:cons nil :: nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: half, lastbit, conv They will be analysed ascendingly in the following order: half < conv lastbit < conv ---------------------------------------- (6) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) conv(0') -> cons(nil, 0') conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s conv :: 0':s -> nil:cons cons :: nil:cons -> 0':s -> nil:cons nil :: nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(gen_nil:cons4_0(x), 0') The following defined symbols remain to be analysed: half, lastbit, conv They will be analysed ascendingly in the following order: half < conv lastbit < conv ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s3_0(*(2, n6_0))) -> gen_0':s3_0(n6_0), rt in Omega(1 + n6_0) Induction Base: half(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s3_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) s(half(gen_0':s3_0(*(2, n6_0)))) ->_IH s(gen_0':s3_0(c7_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) conv(0') -> cons(nil, 0') conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s conv :: 0':s -> nil:cons cons :: nil:cons -> 0':s -> nil:cons nil :: nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(gen_nil:cons4_0(x), 0') The following defined symbols remain to be analysed: half, lastbit, conv They will be analysed ascendingly in the following order: half < conv lastbit < conv ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) conv(0') -> cons(nil, 0') conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s conv :: 0':s -> nil:cons cons :: nil:cons -> 0':s -> nil:cons nil :: nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: half(gen_0':s3_0(*(2, n6_0))) -> gen_0':s3_0(n6_0), rt in Omega(1 + n6_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(gen_nil:cons4_0(x), 0') The following defined symbols remain to be analysed: lastbit, conv They will be analysed ascendingly in the following order: lastbit < conv ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lastbit(gen_0':s3_0(*(2, n300_0))) -> gen_0':s3_0(0), rt in Omega(1 + n300_0) Induction Base: lastbit(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: lastbit(gen_0':s3_0(*(2, +(n300_0, 1)))) ->_R^Omega(1) lastbit(gen_0':s3_0(*(2, n300_0))) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) lastbit(0') -> 0' lastbit(s(0')) -> s(0') lastbit(s(s(x))) -> lastbit(x) conv(0') -> cons(nil, 0') conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x))) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lastbit :: 0':s -> 0':s conv :: 0':s -> nil:cons cons :: nil:cons -> 0':s -> nil:cons nil :: nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: half(gen_0':s3_0(*(2, n6_0))) -> gen_0':s3_0(n6_0), rt in Omega(1 + n6_0) lastbit(gen_0':s3_0(*(2, n300_0))) -> gen_0':s3_0(0), rt in Omega(1 + n300_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(gen_nil:cons4_0(x), 0') The following defined symbols remain to be analysed: conv