/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 297 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 87 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 465 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 146 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^2) (33) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTRS (35) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (36) typed CpxTrs (37) OrderProof [LOWER BOUND(ID), 0 ms] (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 287 ms] (40) BEST (41) proven lower bound (42) LowerBoundPropagationProof [FINISHED, 0 ms] (43) BOUNDS(n^1, INF) (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (46) proven lower bound (47) LowerBoundPropagationProof [FINISHED, 0 ms] (48) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of plus: plus, times Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: times([], s(y)) The defined contexts are: plus([], x1) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(y)) -> plus(times(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(y)) -> plus(times(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: times :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: times_2 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(y)) -> plus(times(x, y), x) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: times :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: times(x, 0) -> 0 [1] times(x, s(0)) -> plus(0, x) [2] times(x, s(s(y'))) -> plus(plus(times(x, y'), x), x) [2] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: times :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x times(z, z') -{ 2 }-> plus(plus(times(x, y'), x), x) :|: z' = 1 + (1 + y'), x >= 0, y' >= 0, z = x times(z, z') -{ 2 }-> plus(0, x) :|: x >= 0, z' = 1 + 0, z = x times(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { times } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {plus}, {times} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 2 }-> plus(0, z) :|: z >= 0, z' = 1 + 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 times(z, z') -{ 3 + z }-> s :|: s >= 0, s <= 0 + z, z >= 0, z' = 1 + 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + 2*z*z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 times(z, z') -{ 3 + z }-> s :|: s >= 0, s <= 0 + z, z >= 0, z' = 1 + 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: {times} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] times: runtime: ?, size: O(n^2) [z + 2*z*z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: times after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + z + 2*z*z' + 4*z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 times(z, z') -{ 3 + z }-> s :|: s >= 0, s <= 0 + z, z >= 0, z' = 1 + 0 times(z, z') -{ 2 }-> plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0 times(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] times: runtime: O(n^2) [4 + z + 2*z*z' + 4*z'], size: O(n^2) [z + 2*z*z'] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^2) ---------------------------------------- (33) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (34) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z))) times(x, 0') -> 0' times(x, s(y)) -> plus(times(x, y), x) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (36) Obligation: TRS: Rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z))) times(x, 0') -> 0' times(x, s(y)) -> plus(times(x, y), x) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) Types: times :: s:0' -> s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' ---------------------------------------- (37) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: times, plus They will be analysed ascendingly in the following order: plus < times ---------------------------------------- (38) Obligation: TRS: Rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z))) times(x, 0') -> 0' times(x, s(y)) -> plus(times(x, y), x) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) Types: times :: s:0' -> s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: plus, times They will be analysed ascendingly in the following order: plus < times ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: plus(gen_s:0'2_0(a), gen_s:0'2_0(0)) ->_R^Omega(1) gen_s:0'2_0(a) Induction Step: plus(gen_s:0'2_0(a), gen_s:0'2_0(+(n4_0, 1))) ->_R^Omega(1) s(plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0))) ->_IH s(gen_s:0'2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (40) Complex Obligation (BEST) ---------------------------------------- (41) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z))) times(x, 0') -> 0' times(x, s(y)) -> plus(times(x, y), x) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) Types: times :: s:0' -> s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: plus, times They will be analysed ascendingly in the following order: plus < times ---------------------------------------- (42) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (43) BOUNDS(n^1, INF) ---------------------------------------- (44) Obligation: TRS: Rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z))) times(x, 0') -> 0' times(x, s(y)) -> plus(times(x, y), x) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) Types: times :: s:0' -> s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: times ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) -> gen_s:0'2_0(*(n421_0, a)), rt in Omega(1 + a*n421_0 + n421_0) Induction Base: times(gen_s:0'2_0(a), gen_s:0'2_0(0)) ->_R^Omega(1) 0' Induction Step: times(gen_s:0'2_0(a), gen_s:0'2_0(+(n421_0, 1))) ->_R^Omega(1) plus(times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)), gen_s:0'2_0(a)) ->_IH plus(gen_s:0'2_0(*(c422_0, a)), gen_s:0'2_0(a)) ->_L^Omega(1 + a) gen_s:0'2_0(+(a, *(n421_0, a))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (46) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z))) times(x, 0') -> 0' times(x, s(y)) -> plus(times(x, y), x) plus(x, 0') -> x plus(x, s(y)) -> s(plus(x, y)) Types: times :: s:0' -> s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: times ---------------------------------------- (47) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (48) BOUNDS(n^2, INF)