/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] ** Step 1.b:1: NaturalPI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = 2 p(false) = 0 p(gcd) = 1 + 2*x1 + 2*x2 p(if_gcd) = 1 + 4*x1 + 2*x2 + 2*x3 p(le) = 0 p(minus) = x1 p(s) = 2 + x1 p(true) = 0 Following rules are strictly oriented: gcd(0(),y) = 5 + 2*y > y = y gcd(s(x),0()) = 9 + 2*x > 2 + x = s(x) if_gcd(false(),s(x),s(y)) = 9 + 2*x + 2*y > 5 + 2*x + 2*y = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = 9 + 2*x + 2*y > 5 + 2*x + 2*y = gcd(minus(x,y),s(y)) minus(s(x),s(y)) = 2 + x > x = minus(x,y) Following rules are (at-least) weakly oriented: gcd(s(x),s(y)) = 9 + 2*x + 2*y >= 9 + 2*x + 2*y = if_gcd(le(y,x),s(x),s(y)) le(0(),y) = 0 >= 0 = true() le(s(x),0()) = 0 >= 0 = false() le(s(x),s(y)) = 0 >= 0 = le(x,y) minus(x,0()) = x >= x = x ** Step 1.b:2: NaturalPI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = 0 p(false) = 0 p(gcd) = 4 + 2*x1 + 2*x2 p(if_gcd) = x1 + 2*x2 + 2*x3 p(le) = 2 p(minus) = x1 p(s) = 2 + x1 p(true) = 0 Following rules are strictly oriented: gcd(s(x),s(y)) = 12 + 2*x + 2*y > 10 + 2*x + 2*y = if_gcd(le(y,x),s(x),s(y)) le(0(),y) = 2 > 0 = true() le(s(x),0()) = 2 > 0 = false() Following rules are (at-least) weakly oriented: gcd(0(),y) = 4 + 2*y >= y = y gcd(s(x),0()) = 8 + 2*x >= 2 + x = s(x) if_gcd(false(),s(x),s(y)) = 8 + 2*x + 2*y >= 8 + 2*x + 2*y = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = 8 + 2*x + 2*y >= 8 + 2*x + 2*y = gcd(minus(x,y),s(y)) le(s(x),s(y)) = 2 >= 2 = le(x,y) minus(x,0()) = x >= x = x minus(s(x),s(y)) = 2 + x >= x = minus(x,y) ** Step 1.b:3: NaturalPI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = 3 p(false) = 0 p(gcd) = 1 + x1 + x2 p(if_gcd) = 1 + 4*x1 + x2 + x3 p(le) = 0 p(minus) = 1 + x1 p(s) = 1 + x1 p(true) = 0 Following rules are strictly oriented: minus(x,0()) = 1 + x > x = x Following rules are (at-least) weakly oriented: gcd(0(),y) = 4 + y >= y = y gcd(s(x),0()) = 5 + x >= 1 + x = s(x) gcd(s(x),s(y)) = 3 + x + y >= 3 + x + y = if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) = 3 + x + y >= 3 + x + y = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = 3 + x + y >= 3 + x + y = gcd(minus(x,y),s(y)) le(0(),y) = 0 >= 0 = true() le(s(x),0()) = 0 >= 0 = false() le(s(x),s(y)) = 0 >= 0 = le(x,y) minus(s(x),s(y)) = 2 + x >= 1 + x = minus(x,y) ** Step 1.b:4: NaturalPI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: le(s(x),s(y)) -> le(x,y) - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = 0 p(false) = 0 p(gcd) = 1 + x1 + 2*x1*x2 + 2*x2 p(if_gcd) = x1 + x2 + 2*x2*x3 + x3 p(le) = 3 + x1 p(minus) = x1 p(s) = 2 + x1 p(true) = 0 Following rules are strictly oriented: le(s(x),s(y)) = 5 + x > 3 + x = le(x,y) Following rules are (at-least) weakly oriented: gcd(0(),y) = 1 + 2*y >= y = y gcd(s(x),0()) = 3 + x >= 2 + x = s(x) gcd(s(x),s(y)) = 15 + 5*x + 2*x*y + 6*y >= 15 + 5*x + 2*x*y + 6*y = if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) = 12 + 5*x + 2*x*y + 5*y >= 5 + 2*x + 2*x*y + 5*y = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = 12 + 5*x + 2*x*y + 5*y >= 5 + 5*x + 2*x*y + 2*y = gcd(minus(x,y),s(y)) le(0(),y) = 3 >= 0 = true() le(s(x),0()) = 5 + x >= 0 = false() minus(x,0()) = x >= x = x minus(s(x),s(y)) = 2 + x >= x = minus(x,y) ** Step 1.b:5: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))