/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 37 ms] (8) CdtProblem (9) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (10) BOUNDS(1, 1) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) SlicingProof [LOWER BOUND(ID), 0 ms] (14) CpxTRS (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) typed CpxTrs (17) OrderProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 194 ms] (20) proven lower bound (21) LowerBoundPropagationProof [FINISHED, 0 ms] (22) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> 0 f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: f(s(x), []) The defined contexts are: f([], x1) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, y) -> 0 f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) Tuples: F(0, z0) -> c F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) S tuples: F(0, z0) -> c F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c, c1_2 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(0, z0) -> c ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) Tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) S tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) We considered the (Usable) Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) And the Tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(F(x_1, x_2)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(f(x_1, x_2)) = 0 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) Tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) S tuples:none K tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2 ---------------------------------------- (9) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(0', y) -> 0' f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (13) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: f/1 ---------------------------------------- (14) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(0') -> 0' f(s(x)) -> f(f(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: TRS: Rules: f(0') -> 0' f(s(x)) -> f(f(x)) Types: f :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (17) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f ---------------------------------------- (18) Obligation: TRS: Rules: f(0') -> 0' f(s(x)) -> f(f(x)) Types: f :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Induction Base: f(gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: f(gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) f(f(gen_0':s2_0(n4_0))) ->_IH f(gen_0':s2_0(0)) ->_R^Omega(1) 0' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(0') -> 0' f(s(x)) -> f(f(x)) Types: f :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (21) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (22) BOUNDS(n^1, INF)