/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 53 ms] (6) CdtProblem (7) CdtInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 4 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, c(y)) -> f(x, s(f(y, y))) f(s(x), y) -> f(x, s(c(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: f(x, c([])) The defined contexts are: f(x0, s([])) f(x0, s(c([]))) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, c(y)) -> f(x, s(f(y, y))) f(s(x), y) -> f(x, s(c(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) S tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2, c2_1 ---------------------------------------- (5) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) We considered the (Usable) Rules:none And the Tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1, x_2)) = x_2 POL(c(x_1)) = [1] + x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(f(x_1, x_2)) = [1] + x_2 POL(s(x_1)) = 0 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2, c2_1 ---------------------------------------- (7) CdtInstantiationProof (BOTH BOUNDS(ID, ID)) Use instantiation to replace F(z0, c(z1)) -> c1(F(z0, s(f(z1, z1))), F(z1, z1)) by F(c(z1), c(z1)) -> c1(F(c(z1), s(f(z1, z1))), F(z1, z1)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(c(z1), s(f(z1, z1))), F(z1, z1)) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(c(z1), c(z1)) -> c1(F(c(z1), s(f(z1, z1))), F(z1, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(c(z1), c(z1)) -> c1(F(z1, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (11) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(z0, c(z1)) -> f(z0, s(f(z1, z1))) f(s(z0), z1) -> f(z0, s(c(z1))) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) S tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) K tuples: F(c(z1), c(z1)) -> c1(F(z1, z1)) Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(s(z0), z1) -> c2(F(z0, s(c(z1)))) We considered the (Usable) Rules:none And the Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(F(x_1, x_2)) = x_1 POL(c(x_1)) = [3] + x_1 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(s(z0), z1) -> c2(F(z0, s(c(z1)))) F(c(z1), c(z1)) -> c1(F(z1, z1)) S tuples:none K tuples: F(c(z1), c(z1)) -> c1(F(z1, z1)) F(s(z0), z1) -> c2(F(z0, s(c(z1)))) Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, c(y)) -> f(x, s(f(y, y))) f(s(x), y) -> f(x, s(c(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(s(x), y) ->^+ f(x, s(c(y))) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x)]. The result substitution is [y / s(c(y))]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, c(y)) -> f(x, s(f(y, y))) f(s(x), y) -> f(x, s(c(y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, c(y)) -> f(x, s(f(y, y))) f(s(x), y) -> f(x, s(c(y))) S is empty. Rewrite Strategy: FULL