/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 236 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0) -> s(0) f(s(x)) -> s(s(g(x))) g(0) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0) -> s(0) f(s(x)) -> s(s(g(x))) g(0) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[1, 2, 3, 4, 5] {(1,2,[g_1|0, f_1|0, f_1|1, 0|1]), (1,3,[s_1|1]), (1,4,[s_1|1]), (2,2,[s_1|0, 0|0]), (3,2,[0|1]), (4,5,[s_1|1]), (5,2,[g_1|1, f_1|1, 0|1]), (5,3,[s_1|1]), (5,4,[s_1|1])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' Types: g :: s:0' -> s:0' s :: s:0' -> s:0' f :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, f They will be analysed ascendingly in the following order: g = f ---------------------------------------- (10) Obligation: TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' Types: g :: s:0' -> s:0' s :: s:0' -> s:0' f :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: f, g They will be analysed ascendingly in the following order: g = f ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_s:0'2_0(*(2, n4_0))) -> gen_s:0'2_0(+(1, *(2, n4_0))), rt in Omega(1 + n4_0) Induction Base: f(gen_s:0'2_0(*(2, 0))) ->_R^Omega(1) s(0') Induction Step: f(gen_s:0'2_0(*(2, +(n4_0, 1)))) ->_R^Omega(1) s(s(g(gen_s:0'2_0(+(1, *(2, n4_0)))))) ->_R^Omega(1) s(s(f(gen_s:0'2_0(*(2, n4_0))))) ->_IH s(s(gen_s:0'2_0(+(1, *(2, c5_0))))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' Types: g :: s:0' -> s:0' s :: s:0' -> s:0' f :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: f, g They will be analysed ascendingly in the following order: g = f ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' Types: g :: s:0' -> s:0' s :: s:0' -> s:0' f :: s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Lemmas: f(gen_s:0'2_0(*(2, n4_0))) -> gen_s:0'2_0(+(1, *(2, n4_0))), rt in Omega(1 + n4_0) Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: g They will be analysed ascendingly in the following order: g = f